3,826 research outputs found
Recommended from our members
Spatio-temporal directional analysis of 4D echocardiography
Speckle noise corrupts ultrasonic data by introducing sharp changes in an echocardiographic image intensity profile, while attenuation alters the intensity of equally significant cardiac structures. These properties introduce inhomogeneity in the spatial domain and suggests that measures based on phase information rather than intensity are more appropriate for denoising and cardiac border detection. The present analysis method relies on the expansion of temporal ultrasonic volume data on complex exponential wavelet-like basis functions called Brushlets. These basis functions decompose a signal into distinct patterns of oriented textures. Projected coefficients are associated with distinct 'brush strokes' of a particular size and orientation. 4D overcomplete brushlet analysis is applied to temporal echocardiographic values. We show that adding the time dimension in the analysis dramatically improves the quality and robustness of the method without adding complexity in the design of a segmentation tool. We have investigated mathematical and empirical methods for identifying the most 'efficient' brush stroke sizes and orientations for decomposition and reconstruction on both phantom and clinical data. In order to determine the 'best tiling' or equivalently, the 'best brushlet basis', we use an entropy-based information cost metric function. Quantitative validation and clinical applications of this new spatio-temporal analysis tool are reported for balloon phantoms and clinical data sets
Recommended from our members
Coronary Occlusion Detection with 4D Optical Flow Based Strain Estimation on 4D Ultrasound
Real-time three-dimensional echocardiography (RT3DE) offers an efficient way to obtain complete 3D images of the heart over an entire cardiac cycle in just a few seconds. The complex 3D wall motion and temporal information contained in these 4D data sequences has the potential to enhance and supplement other imaging modalities for clinical diagnoses based on cardiac motion analysis. In our previous work, a 4D optical flow based method was developed to estimate dynamic cardiac metrics, including strains and displacements, from 4D ultrasound. In this study, in order to evaluate the ability of our method in detecting ischemic regions, coronary artery occlusion experiments at various locations were performed on five dogs. 4D ultrasound data acquired during these experiments were analyzed with our proposed method. Ischemic regions predicted by the outcome of strain measurements were compared to predictions from cardiac physiology with strong agreement. This is the first direct validation study of our image analysis method for biomechanical prediction and in vivo experimental outcome
Recommended from our members
Comparing Optical-Flow Based Methods for Quantification of Myocardial Deformations on RT3D Ultrasound
This paper presents a new homogeneity measure for variational segmentation with multiple level set functions. We propose to modify the quadratic homogeneity measure to trade off the convexity of the function against a faster rate of convergence. We tested in two series of experiments the performance of this new homogeneity force at converging to appropriate partitioning of brain MRI data sets, over a large range of image spatial resolution and image quality, in terms of tissue homogeneity and contrast
Recommended from our members
LV Volume Quantification via Spatiotemporal Analysis of Real-Time 3-D Echocardiography
This paper presents a method of four-dimensional (4-D) (3-D+Time) space-frequency analysis for directional denoising and enhancement of real-time three-dimensional (RT3D) ultrasound and quantitative measures in diagnostic cardiac ultrasound. Expansion of echocardiographic volumes is performed with complex exponential wavelet-like basis functions called brushlets. These functions offer good localization in time and frequency and decompose a signal into distinct patterns of oriented harmonics, which are invariant to intensity and contrast range. Deformable-model segmentation is carried out on denoised data after thresholding of transform coefficients. This process attenuates speckle noise while preserving cardiac structure location. The superiority of 4-D over 3-D analysis for decorrelating additive white noise and multiplicative speckle noise on a 4-D phantom volume expanding in time is demonstrated. Quantitative validation, computed for contours and volumes, is performed on in vitro balloon phantoms. Clinical applications of this spatiotemporal analysis tool are reported for six patient cases providing measures of left ventricular volumes and ejection fraction
Influence of randomly distributed magnetic nanoparticles on surface superconductivity in Nb films
We report on combined resistance and magnetic measurements in a hybrid
structure (HS) of randomly distributed anisotropic CoPt magnetic nanoparticles
(MN) embedded in a 160 nm Nb thick film. Our resistance measurements exhibited
a sharp increase at the magnetically determined bulk upper-critical fields
Hc2(T). Above these points the resistance curves are rounded, attaining the
normal state value at much higher fields identified as the surface
superconductivity fields Hc3(T). When plotted in reduced temperature units, the
characteristic field lines Hc3(T) of the HS and of a pure Nb film, prepared at
exactly the same conditions, coincide for H10 kOe
they strongly segregate. Interestingly, the characteristic value H=10 kOe is
equal to the saturation field of the MN. The behavior mentioned above is
observed only for the case where the field is normal to the HS, while is absent
when the field is parallel to the film. Our experimental results suggest that
the observed enhancement of surface superconductivity field Hc3(T) is possibly
due to the not uniform local reduction of the external magnetic field by the
dipolar fields of the MN.Comment: to be published in Phys. Rev.
Real-Time Segmentation of 4D Ultrasound by Active Geometric Functions
Four-dimensional ultrasound based on matrix phased array transducers can capture the complex 4D cardiac motion in a complete and real-time fashion. However, the large amount of information residing in 4D ultrasound scans and novel applications under interventional settings pose a big challenge in efficiency for workflow and computer-aided diagnostic algorithms such as segmentation. In this context, a novel formulation framework of the minimal surface problem, called active geometric functions (AGF), is proposed to reach truly real-time performance in segmenting 4D ultrasound data. A specific instance of AGF based on finite element modeling and Hermite surface descriptors was implemented and evaluated on 35 4D ultrasound data sets with a total of 425 time frames. Quantitative comparison to manual tracing showed that the proposed method provides LV contours close to manual segmentation and that the discrepancy was comparable to inter-observer tracing variability. The ability of such realtime segmentation will not only facilitate the diagnoses and workflow, but also enables novel applications such as interventional guidance and interactive image acquisition with online segmentation
Recommended from our members
Quantification of LV Volumes with 4D Real-Time Echocardiography
This paper presents a new 4D (3D+Time) expansion of echocardiographic volumes on complex exponential wavelet-like basis functions called Brushlets. Brushlet functions offer good localization in time and frequency and decompose a signal into distinct patterns of oriented textures, invariant to intensity and contrast range. Automatic left ventricle (LV) endocardial border detection is carried out in the transform domain where speckle noise is attenuated while cardiac structure location is preserved. Quantitative validation and clinical applications of this new spatio-temporal analysis tool are reported with results on phantoms and clinical data sets to quantify LV volumes and ejection fraction
On rationality of the intersection points of a line with a plane quartic
We study the rationality of the intersection points of certain lines and
smooth plane quartics C defined over F_q. For q \geq 127, we prove the
existence of a line such that the intersection points with C are all rational.
Using another approach, we further prove the existence of a tangent line with
the same property as soon as the characteristic of F_q is different from 2 and
q \geq 66^2+1. Finally, we study the probability of the existence of a rational
flex on C and exhibit a curious behavior when the characteristic of F_q is
equal to 3.Comment: 17 pages. Theorem 2 now includes the characteristic 2 case;
Conjecture 1 from the previous version is proved wron
Caracterização dos solos em áreas manejadas com bacurizeiros nativos nas mesorregiões do Nordeste paraense e Marajó.
A distribuição geográfica de bacurizeiros (Platonia insignis Mart.) é controlada por fatores naturais e antrópicos que contribuem para sua ocorrência e concentração de populações manejadas desta espécie, nas mesorregiões do Nordeste Paraense e Marajó. Com base nessa hipótese, este trabalho teve como objetivo a caracterização dos solos de sítios com bacurizeiros manejados nestas duas mesorregiões..
Lv volume quantification via spatiotemporal analysis of real-time 3-d echocardiography
Abstract—This paper presents a method of four-dimensional (4-D) (3-D + Time) space–frequency analysis for directional denoising and enhancement of real-time three-dimensional (RT3D) ultrasound and quantitative measures in diagnostic cardiac ultrasound. Expansion of echocardiographic volumes is performed with complex exponential wavelet-like basis functions called brushlets. These functions offer good localization in time and frequency and decompose a signal into distinct patterns of oriented harmonics, which are invariant to intensity and contrast range. Deformable-model segmentation is carried out on denoised data after thresholding of transform coefficients. This process attenuates speckle noise while preserving cardiac structure location. The superiority of 4-D over 3-D analysis for decorrelating additive white noise and multiplicative speckle noise on a 4-D phantom volume expanding in time is demonstrated. Quantitative validation, computed for contours and volumes, is performed on in vitro balloon phantoms. Clinical applications of this spaciotemporal analysis tool are reported for six patient cases providing measures of left ventricular volumes and ejection fraction. Index Terms—Echocardiography, LV volume, spaciotemporal analysis, speckle denoising. I
- …
