1,192 research outputs found
A Modification of the Social Force Model by Foresight
The motion of pedestrian crowds (e.g. for simulation of an evacuation
situation) can be modeled as a multi-body system of self driven particles with
repulsive interaction. We use a few simple situations to determine the simplest
allowed functional form of the force function. More complexity may be necessary
to model more complex situations. There are many unknown parameters to such
models, which have to be adjusted correctly. The parameters can be related to
quantities that can be measured independently, like step length and frequency.
The microscopic behavior is, however, only poorly reproduced in many
situations, a person approaching a standing or slow obstacle will e.g. show
oscillations in position, and the trajectories of two persons meeting in a
corridor in opposite direction will be far from realistic and somewhat erratic.
This is inpart due to the assumption of instantaneous reaction on the momentary
situation. Obviously, persons react with a small time lag, while on the other
hand they will anticipate changing situations for at least a short time. Thus
basing the repulsive interaction on a (linear) extrapolation over a short time
(e.g. 1 s) eliminates the oscillations at slowing down and smoothes the
patterns of giving way to others to a more realistic behavior. A second problem
is the additive combination of binary interactions. It is shown that combining
only a few relevant interactions gives better model performance.Comment: 6 pages, 5 figures, Preprint from PED 2008 (Wuppertal
Time-evolving measures and macroscopic modeling of pedestrian flow
This paper deals with the early results of a new model of pedestrian flow,
conceived within a measure-theoretical framework. The modeling approach
consists in a discrete-time Eulerian macroscopic representation of the system
via a family of measures which, pushed forward by some motion mappings, provide
an estimate of the space occupancy by pedestrians at successive time steps.
From the modeling point of view, this setting is particularly suitable to
treat nonlocal interactions among pedestrians, obstacles, and wall boundary
conditions. In addition, analysis and numerical approximation of the resulting
mathematical structures, which is the main target of this work, follow more
easily and straightforwardly than in case of standard hyperbolic conservation
laws, also used in the specialized literature by some Authors to address
analogous problems.Comment: 27 pages, 6 figures -- Accepted for publication in Arch. Ration.
Mech. Anal., 201
Pedestrian flows in bounded domains with obstacles
In this paper we systematically apply the mathematical structures by
time-evolving measures developed in a previous work to the macroscopic modeling
of pedestrian flows. We propose a discrete-time Eulerian model, in which the
space occupancy by pedestrians is described via a sequence of Radon positive
measures generated by a push-forward recursive relation. We assume that two
fundamental aspects of pedestrian behavior rule the dynamics of the system: On
the one hand, the will to reach specific targets, which determines the main
direction of motion of the walkers; on the other hand, the tendency to avoid
crowding, which introduces interactions among the individuals. The resulting
model is able to reproduce several experimental evidences of pedestrian flows
pointed out in the specialized literature, being at the same time much easier
to handle, from both the analytical and the numerical point of view, than other
models relying on nonlinear hyperbolic conservation laws. This makes it
suitable to address two-dimensional applications of practical interest, chiefly
the motion of pedestrians in complex domains scattered with obstacles.Comment: 25 pages, 9 figure
Quantitative analysis of pedestrian counterflow in a cellular automaton model
Pedestrian dynamics exhibits various collective phenomena. Here we study
bidirectional pedestrian flow in a floor field cellular automaton model. Under
certain conditions, lane formation is observed. Although it has often been
studied qualitatively, e.g., as a test for the realism of a model, there are
almost no quantitative results, neither empirically nor theoretically. As basis
for a quantitative analysis we introduce an order parameter which is adopted
from the analysis of colloidal suspensions. This allows to determine a phase
diagram for the system where four different states (free flow, disorder, lanes,
gridlock) can be distinguished. Although the number of lanes formed is
fluctuating, lanes are characterized by a typical density. It is found that the
basic floor field model overestimates the tendency towards a gridlock compared
to experimental bounds. Therefore an anticipation mechanism is introduced which
reduces the jamming probability.Comment: 11 pages, 12 figures, accepted for publication in Phys. Rev.
Statistical mechanics of non-hamiltonian systems: Traffic flow
Statistical mechanics of a small system of cars on a single-lane road is
developed. The system is not characterized by a Hamiltonian but by a
conditional probability of a velocity of a car for the given velocity and
distance of the car ahead. Distribution of car velocities for various densities
of a group of cars are derived as well as probabilities of density fluctuations
of the group for different velocities. For high braking abilities of cars
free-flow and congested phases are found. Platoons of cars are formed for
system of cars with inefficient brakes. A first order phase transition between
free-flow and congested phase is suggested.Comment: 12 pages, 6 figures, presented at TGF, Paris, 200
The valuation of European financial firms
We extend the recent literature concerning accounting based valuation models to investigate financial firms from six European countries with substantial financial sectors: France, Germany, Italy, Netherlands, Switzerland and the UK. Not only are these crucial industries worthy of study in their own right, but unusual accounting practices, and inter-country differences in those accounting practices, provide valuable insights into the accounting-value relationship. Our sample consists of 7,714 financial firm/years observations from 1,140 companies drawn from 1989-2000. Sub-samples include 1,309 firm/years for banks, 650 for insurance companies, 1,705 for real estate firms, and 3,239 for investment companies. In most countries we find that the valuation models work as well or better in explaining cross-sectional variations in the market-to-book ratio for financial firms as they do for industrial and commercial firms in the same countries, although Switzerland is an exception to this generalization. As expected, the results are sensitive to industrial differences, accounting regulation and accounting practices. In particular, marking assets to market value reduces the relevance of earnings figures and increases that of equity
The Fundamental Diagram of Pedestrian Movement Revisited
The empirical relation between density and velocity of pedestrian movement is
not completely analyzed, particularly with regard to the `microscopic' causes
which determine the relation at medium and high densities. The simplest system
for the investigation of this dependency is the normal movement of pedestrians
along a line (single-file movement). This article presents experimental results
for this system under laboratory conditions and discusses the following
observations: The data show a linear relation between the velocity and the
inverse of the density, which can be regarded as the required length of one
pedestrian to move. Furthermore we compare the results for the single-file
movement with literature data for the movement in a plane. This comparison
shows an unexpected conformance between the fundamental diagrams, indicating
that lateral interference has negligible influence on the velocity-density
relation at the density domain . In addition we test a
procedure for automatic recording of pedestrian flow characteristics. We
present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure
Pedestrian, Crowd, and Evacuation Dynamics
This contribution describes efforts to model the behavior of individual
pedestrians and their interactions in crowds, which generate certain kinds of
self-organized patterns of motion. Moreover, this article focusses on the
dynamics of crowds in panic or evacuation situations, methods to optimize
building designs for egress, and factors potentially causing the breakdown of
orderly motion.Comment: This is a review paper. For related work see http://www.soms.ethz.c
A Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process
A new vehicular traffic flow model based on a stochastic jump process in
vehicle acceleration and braking is introduced. It is based on a master
equation for the single car probability density in space, velocity and
acceleration with an additional vehicular chaos assumption and is derived via a
Markovian ansatz for car pairs. This equation is analyzed using simple driver
interaction models in the spatial homogeneous case. Velocity distributions in
stochastic equilibrium, together with the car density dependence of their
moments, i.e. mean velocity and scattering and the fundamental diagram are
presented.Comment: 27 pages, 6 figure
Information use by humans during dynamic route choice in virtual crowd evacuations
We conducted a computer-based experiment with over 450 human participants and used a Bayesian model selection approach to explore dynamic exit route choice mechanisms of individuals in simulated crowd evacuations. In contrast to previous work, we explicitly explore the use of time-dependent and time-independent information in decision-making. Our findings suggest that participants tended to base their exit choices on time-dependent information, such as differences in queue lengths and queue speeds at exits rather than on time-independent information, such as differences in exit widths or exit route length. We found weak support for similar decision-making mechanisms under a stress-inducing experimental treatment. However, under this treatment participants were less able or willing to adjust their original exit choice in the course of the evacuation. Our experiment is not a direct test of behaviour in real evacuations, but it does highlight the role different types of information and stress play in real human decision-making in a virtual environment. Our findings may be useful in identifying topics for future study on real human crowd movements or for developing more realistic agent-based simulations
- …
