1,934 research outputs found
Deformation of canonical morphisms and the moduli of surfaces of general type
In this article we study the deformation of finite maps and show how to use
this deformation theory to construct varieties with given invariants in a
projective space. Among other things, we prove a criterion that determines when
a finite map can be deformed to a one--to--one map. We use this criterion to
construct new simple canonical surfaces with different and . Our
general results enable us to describe some new components of the moduli of
surfaces of general type. We also find infinitely many moduli spaces having one component whose general point corresponds to a
canonically embedded surface and another component whose general point
corresponds to a surface whose canonical map is a degree 2 morphism.Comment: 32 pages. Final version with some simplifications and clarifications
in the exposition. To appear in Invent. Math. (the final publication is
available at springerlink.com
First operation and performance of a 200 lt double phase LAr LEM-TPC with a 40x76 cm^2 readout
In this paper we describe the design, construction, and operation of a first
large area double-phase liquid argon Large Electron Multiplier Time Projection
Chamber (LAr LEM-TPC). The detector has a maximum drift length of 60 cm and the
readout consists of a cm LEM and 2D projective anode to
multiply and collect drifting charges. Scintillation light is detected by means
of cryogenic PMTs positioned below the cathode. To record both charge and light
signals, we have developed a compact acquisition system, which is scalable up
to ton-scale detectors with thousands of charge readout channels. The
acquisition system, as well as the design and the performance of custom-made
charge sensitive preamplifiers, are described. The complete experimental setup
has been operated for a first time during a period of four weeks at CERN in the
cryostat of the ArDM experiment, which was equipped with liquid and gas argon
purification systems. The detector, exposed to cosmic rays, recorded events
with a single-channel signal-to-noise ratio in excess of 30 for minimum
ionising particles. Cosmic muon tracks and their -rays were used to
assess the performance of the detector, and to estimate the liquid argon purity
and the gain at different amplification fields.Comment: 23 pages, 21 figure
Instability of dilute granular flow on rough slope
We study numerically the stability of granular flow on a rough slope in
collisional flow regime in the two-dimension. We examine the density dependence
of the flowing behavior in low density region, and demonstrate that the
particle collisions stabilize the flow above a certain density in the parameter
region where a single particle shows an accelerated behavior. Within this
parameter regime, however, the uniform flow is only metastable and is shown to
be unstable against clustering when the particle density is not high enough.Comment: 4 pages, 6 figures, submitted to J. Phys. Soc. Jpn.; Fig. 2 replaced;
references added; comments added; misprints correcte
Stable operation with gain of a double phase Liquid Argon LEM-TPC with a 1 mm thick segmented LEM
In this paper we present results from a test of a small Liquid Argon Large
Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector
concept provides a 3D-tracking and calorimetric device capable of charge
amplification, suited for next-generation neutrino detectors and possibly
direct Dark Matter searches. During a test of a 3~lt chamber equipped with a
1010~cm readout, cosmic muon data was recorded during three weeks
of data taking. A maximum gain of 6.5 was achieved and the liquid argon was
kept pure enough to ensure 20~cm drift (O(ppb)~O equivalent).Comment: 7 pages, 6 figures, to appear in Proc. of 1st International Workshop
towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba
(Japan), March 201
Investigation of environmental change pattern in Japan
The author has identified the following significant results. A detailed land use classification for a large urban area of Tokyo was made using MSS digital data. It was found that residential, commercial, industrial, and wooded areas and grasslands can be successfully classified. A mesoscale vortex associated with large ocean current, Kuroshio, which is a rare phenomenon, was recognized visually through the analysis of MSS data. It was found that this vortex affects the effluent patterns of rivers. Lava flowing from Sakurajima Volcano was clearly classified for three major erruptions (1779, 1914, and 1946) using MSS data
First operation and drift field performance of a large area double phase LAr Electron Multiplier Time Projection Chamber with an immersed Greinacher high-voltage multiplier
We have operated a liquid-argon large-electron-multiplier time-projection
chamber (LAr LEM-TPC) with a large active area of 76 40 cm and a
drift length of 60 cm. This setup represents the largest chamber ever achieved
with this novel detector concept. The chamber is equipped with an immersed
built-in cryogenic Greinacher multi-stage high-voltage (HV) multiplier, which,
when subjected to an external AC HV of 1 kV, statically
charges up to a voltage a factor of 30 higher inside the LAr vessel,
creating a uniform drift field of 0.5 kV/cm over the full drift length.
This large LAr LEM-TPC was brought into successful operation in the
double-phase (liquid-vapor) operation mode and tested during a period of
1 month, recording impressive three-dimensional images of very
high-quality from cosmic particles traversing or interacting in the sensitive
volume. The double phase readout and HV systems achieved stable operation in
cryogenic conditions demonstrating their good characteristics, which
particularly suit applications for next-generation giant-scale LAr-TPCs.Comment: 26 pages, 19 figure
Towards a liquid Argon TPC without evacuation: filling of a 6 m^3 vessel with argon gas from air to ppm impurities concentration through flushing
In this paper we present a successful experimental test of filling a volume
of 6 m with argon gas, starting from normal ambient air and reducing the
impurities content down to few parts per million (ppm) oxygen equivalent. This
level of contamination was directly monitored measuring the slow component of
the scintillation light of the Ar gas, which is sensitive to {\it all} sources
of impurities affecting directly the argon scintillation.Comment: 9 pages, 6 figures, to appear in Proc. 1st International Workshop
towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba,
March 201
Water as a potential molecular probe for functional groups on carbon surfaces
A new and simple method, using water as a potential molecular probe, is proposed for the determination of the concentration of surface oxygen groups on carbon adsorbents. The procedure is based on a determination of the Henry constant between a water molecule and a functional group from the volume integration of the Boltzmann factor over the accessible space around the functional group. Three porous carbons are used in this study to test the new method: A-5, RF-100 and RF-200. The results obtained are in good agreement with those measured by Boehm titration. This new method can be applied to adsorbents containing small concentrations of oxygen groups where the Boehm titration method may give unreliable results
Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER)
GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) is a large underground
observatory for proton decay search, neutrino astrophysics and CP-violation
studies in the lepton sector. Possible underground sites are studied within the
FP7 LAGUNA project (Europe) and along the JPARC neutrino beam in collaboration
with KEK (Japan). The concept is scalable to very large masses.Comment: 4 pages, 1 figure, Contribution to the Workshop "European Strategy
for Future Neutrino Physics", CERN, Oct. 200
On the resolution of constant isosteric heat of propylene adsorptionon graphite in the sub-monolayer coverage region
An early experimental study by Bezus, Dreving and Kiselev [1] on the adsorption of propylene on Spheron-6 carbon black (graphitized at ∼3000C) reported a plot of constant isosteric heat versus loading in the sub-monolayer region. This contrasts with their report of a linear increase in isosteric heat for propane, a similar molecule to propylene. In this paper, we report extensive Grand Canonical Monte Carlo (GCMC) simulations and a high-resolution experimental study of propylene adsorption on Carbopack F, a highly graphitized thermal carbon black, over the same temperature range studied by Bezus et al. From this combined simulation and experimental study we conclude that propylene also shows a linear increase in the isosteric heat versus loading in the sub-monolayer region, indicating that the linear increase in the fluid-fluid interaction in this region more than compensates for the decrease in the solid-fluid interaction that results from the change in orientation of the adsorbate molecules. Our study contradicts the propylene results of Bezus et al., and careful inspection of their isotherm in the sub-monolayer region shows that it does not follow Henry’s law. This calls into question their argument that π-π interactions between propylene molecules are an explanation for the constant heat
- …
