84 research outputs found
Targeting carbonic anhydrase IX improves the anti-cancer efficacy of mTOR inhibitors.
The inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) by chemical inhibitors, such as rapamycin, has demonstrated anti-cancer activity in preclinical and clinical trials. Their efficacy is, however, limited and tumors eventually relapse through resistance formation. In this study, using two different cancer mouse models, we identify tumor hypoxia as a novel mechanism of resistance of cancer cells against mTORC1 inhibitors. Indeed, we show that the activity of mTORC1 is mainly restricted to the non-hypoxic tumor compartment, as evidenced by a mutually exclusive staining pattern of the mTORC1 activity marker pS6 and the hypoxia marker pimonidazole. Consequently, whereas rapamycin reduces cancer cell proliferation in non-hypoxic regions, it has no effect in hypoxic areas, suggesting that cancer cells proliferate independently of mTORC1 under hypoxia. Targeting the hypoxic tumor compartment by knockdown of carbonic anhydrase IX (CAIX) using short hairpin RNA or by chemical inhibition of CAIX with acetazolamide potentiates the anti-cancer activity of rapamycin. Taken together, these data emphasize that hypoxia impairs the anti-cancer efficacy of rapalogs. Therapeutic strategies targeting the hypoxic tumor compartment, such as the inhibition of CAIX, potentiate the efficacy of rapamycin and warrant further clinical evaluation
CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
Editing the genome of chicken primordial germ cells to introduce alleles and study gene function
With continuing advances in genome sequencing technology, the chicken genome
assembly is now better annotated with improved accuracy to the level of single
nucleotide polymorphisms. Additionally, the genomes of other birds such as the duck,
turkey and zebra finch have now been sequenced. A great opportunity exists in avian
biology to use genome editing technology to introduce small and defined sequence
changes to create specific haplotypes in chicken to investigate gene regulatory
function, and also perform rapid and seamless transfer of specific alleles between
chicken breeds. The methods for performing such precise genome editing are well
established for mammalian species but are not readily applicable in birds due to
evolutionary differences in reproductive biology.
A significant leap forward to address this challenge in avian biology was the
development of long-term culture methods for chicken primordial germ cells (PGCs).
PGCs present a cell line in which to perform targeted genetic manipulations that will
be heritable. Chicken PGCs have been successfully targeted to generate genetically
modified chickens. However, genome editing to introduce small and defined sequence
changes has not been demonstrated in any avian species. To address this deficit, the
application of CRISPR/Cas9 and short oligonucleotide donors in chicken PGCs for
performing small and defined sequence changes was investigated in this thesis.
Specifically, homology-directed DNA repair (HDR) using oligonucleotide donors
along with wild-type CRISPR/Cas9 (SpCas9-WT) or high fidelity CRISPR/Cas9
(SpCas9-HF1) was investigated in cultured chicken PGCs. The results obtained
showed that small sequences changes ranging from a single to a few nucleotides could
be precisely edited in many loci in chicken PGCs. In comparison to SpCas9-WT,
SpCas9-HF1 increased the frequency of biallelic and single allele editing to generate
specific homozygous and heterozygous genotypes. This finding demonstrates the
utility of high fidelity CRISPR/Cas9 variants for performing sequence editing with
high efficiency in PGCs.
Since PGCs can be converted into pluripotent stem cells that can potentially
differentiate into many cell types from the three germ layers, genome editing of PGCs
can, therefore, be used to generate PGC-derived avian cell types with defined genetic
alterations to investigate the host-pathogen interactions of infectious avian diseases.
To investigate this possibility, the chicken ANP32A gene was investigated as a target
for genetic resistance to avian influenza virus in PGC-derived chicken cell lines.
Targeted modification of ANP32A was performed to generate clonal lines of genome-edited
PGCs. Avian influenza minigenome replication assays were subsequently
performed in the ANP32A-mutant PGC-derived cell lines. The results verified that
ANP32A function is crucial for the function of both avian virus polymerase and
human-adapted virus polymerase in chicken cells. Importantly, an asparagine to
isoleucine mutation at position 129 (N129I) in chicken ANP32A failed to support
avian influenza polymerase function. This genetic change can be introduced into
chickens and validated in virological studies. Importantly, the results of my
investigation demonstrate the potential to use genome editing of PGCs as an approach
to generate many types of unique cell models for the study of avian biology.
Genome editing of PGCs may also be applied to unravel the genes that control the
development of the avian germ cell lineage. In the mouse, gene targeting has been
extensively applied to generate loss-of-function mouse models to use the reverse
genetics approach to identify key genes that regulate the migration of specified PGCs
to the genital ridges. Avian PGCs express similar cytokine receptors as their
mammalian counterparts. However, the factors guiding the migration of avian PGCs
are largely unknown. To address this, CRISPR/Cas9 was used in this thesis to generate
clonal lines of chicken PGCs with loss-of-function deletions in the CXCR4 and c-Kit
genes which have been implicated in controlling mouse PGC migration. The results
showed that CXCR4-deficient PGCs are absent from the gonads whereas c-Kit-deficient
PGCs colonise the developing gonads in reduced numbers and are
significantly reduced or absent from older stages. This finding shows a conserved role
for CXCR4 and c-Kit signalling in chicken PGC development. Importantly, other
genes suspected to be involved in controlling the development of avian germ cells can
be investigated using this approach to increase our understanding of avian reproductive
biology.
Finally, the methods developed in this thesis for editing of the chicken genome may
be applied in other avian species once culture methods for the PGCs from these species
are develope
Charitable Platforms in Global Surgery: A Systematic Review of their Effectiveness, Cost-Effectiveness, Sustainability, and Role Training
A scalable strategy for high-throughput GFP tagging of endogenous human proteins
A central challenge of the postgenomic era is to comprehensively characterize the cellular role of the ∼20,000 proteins encoded in the human genome. To systematically study protein function in a native cellular background, libraries of human cell lines expressing proteins tagged with a functional sequence at their endogenous loci would be very valuable. Here, using electroporation of Cas9 nuclease/single-guide RNA ribonucleoproteins and taking advantage of a split-GFP system, we describe a scalable method for the robust, scarless, and specific tagging of endogenous human genes with GFP. Our approach requires no molecular cloning and allows a large number of cell lines to be processed in parallel. We demonstrate the scalability of our method by targeting 48 human genes and show that the resulting GFP fluorescence correlates with protein expression levels. We next present how our protocols can be easily adapted for the tagging of a given target with GFP repeats, critically enabling the study of low-abundance proteins. Finally, we show that our GFP tagging approach allows the biochemical isolation of native protein complexes for proteomic studies. Taken together, our results pave the way for the large-scale generation of endogenously tagged human cell lines for the proteome-wide analysis of protein localization and interaction networks in a native cellular context
- …
