229 research outputs found
Some effects of the atmosphere and microphone placement on aircraft flyover noise measurements
The effects of varying atmospheric conditions on certification-type noise measurements were studied. Tests were made under various atmospheric conditions at two test sites, Fresno, California, and Yuma, Arizona, using the same test aircraft, noise, and weather measuring equipment, and operating personnel. Measurements were made to determine the effects of the atmosphere and of microphone placement on aircraft flyover noise. The measurements were obtained for characterization of not only the acoustic signature of the test aircraft, but also specific atmospheric characteristics. Data are presented in the form of charts and tables which indicate that for a wide range of weather conditions, at both site locations, noise data were repeatable for similar aircraft operating conditions. The placement of microphones at ground level and at 1.2 m over both spaded sand and concrete illustrate the effects of ground reflections and surface impedance on the noise measurements
A computer program to predict rotor rotational noise of a stationary rotor from blade loading coefficient
The programing language used is FORTRAN IV. A description of all main and subprograms is provided so that any user possessing a FORTRAN compiler and random access capability can adapt the program to his facility. Rotor blade surface-pressure spectra can be used by the program to calculate: (1) blade station loading spectra, (2) chordwise and/or spanwise integrated blade-loading spectra, and (3) far-field rotational noise spectra. Any of five standard inline functions describing the chordwise distribution of the blade loading can be chosen in order to study parametrically the acoustic predictions. The program output consists of both printed and graphic descriptions of the blade-loading coefficient spectra and far-field acoustic spectrum. The results may also be written on binary file for future processing. Examples of the application of the program along with a description of the rotational noise prediction theory on which the program is based are also provided
Setback distances as a conservation tool in wildlife-human interactions : testing their efficacy for birds affected by vehicles on open-coast sandy beaches
In some wilderness areas, wildlife encounter vehicles disrupt their behaviour and habitat use. Changing driver behaviour has been proposed where bans on vehicle use are politically unpalatable, but the efficacy of vehicle setbacks and reduced speeds remains largely untested. We characterised bird-vehicle encounters in terms of driver behaviour and the disturbance caused to birds, and tested whether spatial buffers or lower speeds reduced bird escape responses on open beaches. Focal observations showed that: i) most drivers did not create sizeable buffers between their vehicles and birds; ii) bird disturbance was frequent; and iii) predictors of probability of flushing (escape) were setback distance and vehicle type (buses flushed birds at higher rates than cars). Experiments demonstrated that substantial reductions in bird escape responses required buffers to be wide (> 25 m) and vehicle speeds to be slow (< 30 km h-1). Setback distances can reduce impacts on wildlife, provided that they are carefully designed and derived from empirical evidence. No speed or distance combination we tested, however, eliminated bird responses. Thus, while buffers reduce response rates, they are likely to be much less effective than vehicle-free zones (i.e. beach closures), and rely on changes to current driver behaviou
Setback distances as a conservation tool in wildlife-human interactions : testing their efficacy for birds affected by vehicles on open-coast sandy beaches
In some wilderness areas, wildlife encounter vehicles disrupt their behaviour and habitat use. Changing driver behaviour has been proposed where bans on vehicle use are politically unpalatable, but the efficacy of vehicle setbacks and reduced speeds remains largely untested. We characterised bird-vehicle encounters in terms of driver behaviour and the disturbance caused to birds, and tested whether spatial buffers or lower speeds reduced bird escape responses on open beaches. Focal observations showed that: i) most drivers did not create sizeable buffers between their vehicles and birds; ii) bird disturbance was frequent; and iii) predictors of probability of flushing (escape) were setback distance and vehicle type (buses flushed birds at higher rates than cars). Experiments demonstrated that substantial reductions in bird escape responses required buffers to be wide (> 25 m) and vehicle speeds to be slow (< 30 km h-1). Setback distances can reduce impacts on wildlife, provided that they are carefully designed and derived from empirical evidence. No speed or distance combination we tested, however, eliminated bird responses. Thus, while buffers reduce response rates, they are likely to be much less effective than vehicle-free zones (i.e. beach closures), and rely on changes to current driver behaviou
Proof-of-Concept of Real-World Quantum Key Distribution with Quantum Frames
We propose and experimentally investigate a fibre-based quantum key
distribution system, which employs polarization qubits encoded into faint laser
pulses. As a novel feature, it allows sending of classical framing information
via sequences of strong laser pulses that precede the quantum data. This allows
synchronization, sender and receiver identification, and compensation of
time-varying birefringence in the communication channel. In addition, this
method also provides a platform to communicate implementation specific
information such as encoding and protocol in view of future optical quantum
networks. Furthermore, we report on our current effort to develop high-rate
error correction.Comment: 25 pages, 14 figures, 4 table
Reduction of spectroscopic strength: Weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions
Технологические решения для строительства разведочной вертикальной скважины глубиной 2620 метров на нефтяном месторождении (Красноярский край)
Технологический проект на сооружение разведочной вертикальной скважины глубиной 2620 метров на нефтяном месторождении (Красноярский край).
В проекте закладываются меры по предотвращению осложнений, а также мероприятия по отбору керна для подсчета запасов, оценки пригодности месторождения к освоению, а также определения геологического строения и составления проектов разработки в целях определения технологии бурения эксплуатационных скважин.Technological project for the construction of an exploratory vertical well with a depth of 2620 meters at an oil field (Krasnoyarsk Territory).
The project includes measures to prevent complications, as well as measures to select the core for calculating reserves, assessing the suitability of the field for development, as well as determining the geological structure and drawing up development projects in order to determine the technology for drilling production wells
Meeting Future Energy Needs in the Hindu Kush Himalaya
As mentioned in earlier chapters, the HKH regions form the entirety of some countries, a major part of other countries, and a small percentage of yet others. Because of this, when we speak about meeting the energy needs of the HKH region we need to be clear that we are not necessarily talking about the countries that host the HKH, but the clearly delineated mountainous regions that form the HKH within these countries. It then immediately becomes clear that energy provisioning has to be done in a mountain context characterized by low densities of population, low incomes, dispersed populations, grossly underdeveloped markets, low capabilities, and poor economies of scale. In other words, the energy policies and strategies for the HKH region have to be specific to these mountain contexts
- …
