1,856 research outputs found
Ichthyoplankton community structure and comparative trophodynamics in an estuarine transition zone
Surveys were conducted to evaluate and compare assemblage
structure and trophodynamics of ichthyoplankton, and their variability, in an estuarine transition zone.
Environmental gradients in the saltfront region of the Patuxent River subestuary, Chesapeake Bay, were hypothesized to define spatiotemporal distributions and assemblages of ichthyoplankton. Larval fishes, zooplankton,
and hydrographic data were collected during spring through early summer 2000 and 2001. Larvae of 28 fish species were collected and species richness was similar each year. Total
larval abundance was highest in the oligohaline region down-estuary of the salt front in 2000, but highest at the salt front in 2001. Larvae of anadromous fishes were most abundant at or up-estuary of the salt front in both years. Two ichthyoplankton assemblages were distinguished: 1) riverine—characterized predominantly by anadromous species (Moronidae and Alosinae); and 2) estuarine—characterized
predominantly by naked goby (Gobiosoma bosc) (Gobiidae). Temperature, dissolved oxygen, salinity-associated
variables (e.g., salt-front location), and concentrations of larval prey, specifically the calanoid copepod
Eurytemora affinis and the cladoceran Bosmina longirostris, were important indicators of larval fish abundance. In
the tidal freshwater region up-estuary of the salt front, there was substantial diet overlap between congeneric
striped bass (Morone saxatilis) and white perch (M. americana) larvae, and also larvae of alewife (Alosa
pseudoharengus) (overlap= 0.71–0.93). Larval abundance, taxonomic diversity, and dietary overlap were highest
within and up-estuary of the salt front, which serves to both structure the ichthyoplankton community and control trophic relationships in the estuarine transition zone
Damping of MHD turbulence in partially ionized gas and the observed difference of velocities of neutrals and ions
Theoretical and observational studies on the turbulence of the interstellar
medium developed fast in the past decades. The theory of supersonic magnetized
turbulence, as well as the understanding of projection effects of observed
quantities, are still in progress. In this work we explore the characterization
of the turbulent cascade and its damping from observational spectral line
profiles. We address the difference of ion and neutral velocities by clarifying
the nature of the turbulence damping in the partially ionized. We provide
theoretical arguments in favor of the explanation of the larger Doppler
broadening of lines arising from neutral species compared to ions as arising
from the turbulence damping of ions at larger scales. Also, we compute a number
of MHD numerical simulations for different turbulent regimes and explicit
turbulent damping, and compare both the 3-dimensional distributions of velocity
and the synthetic line profile distributions. From the numerical simulations,
we place constraints on the precision with which one can measure the 3D
dispersion depending on the turbulence sonic Mach number. We show that no
universal correspondence between the 3D velocity dispersions measured in the
turbulent volume and minima of the 2D velocity dispersions available through
observations exist. For instance, for subsonic turbulence the correspondence is
poor at scales much smaller than the turbulence injection scale, while for
supersonic turbulence the correspondence is poor for the scales comparable with
the injection scale. We provide a physical explanation of the existence of such
a 2D-3D correspondence and discuss the uncertainties in evaluating the damping
scale of ions that can be obtained from observations. However, we show that the
statistics of velocity dispersion from observed line profiles can provide the
spectral index and the energy transfer rate of turbulence. Also, comparing two
similar simulations with different viscous coefficients it was possible to
constrain the turbulent cut-off scale. This may especially prove useful since
it is believed that ambipolar diffusion may be one of the dominant dissipative
mechanism in star-forming regions. In this case, the determination of the
ambipolar diffusion scale may be used as a complementary method for the
determination of magnetic field intensity in collapsing cores. We discuss the
implications of our findings in terms of a new approach to magnetic field
measurement proposed by Li & Houde (2008).Comment: ApJ accepte
Recruitment and spawning-stock biomass distribution of bay anchovy (Anchoa mitchilli) in Chesapeake Bay
Recruitment of bay anchovy (Anchoa mitchilli) in Chesapeake is related to variability in hydrological conditions and to abundance and spatial distribution of spawning stock biomass (SSB). Midwater-trawl surveys conducted for six years, over the entire 320-km length of the bay, provided information on anchovy SSB, annual spatial patterns of recruitment, and their relationships to variability in the estuarine environment. SSB of anchovy varied sixfold in 1995–2000; it alone explained little variability in young-of-the-year (YOY) recruitment level in October, which varied ninefold. Recruitments were low in 1995 and 1996 (47 and 31 Z 109) but higher in 1997–2000 (100 to 265 Z 109). During the recruitment process the YOY population migrated upbay before a subsequent fall-winter downbay migration. The extent of the downbay migration by maturing recruits was greatest in years of high freshwater input to the bay. Mean dissolved oxygen (DO) was more important than freshwater input in controlling distribution of SSB and shifts in SSB location between April– May (prespawning) and June–August (spawning) periods. Recruitments of bay anchovy were higher when mean DO was lowest in the downbay region during the spawning season. It is hypothesized that anchovy recruitment level is inversely related to mean DO concentration because low DO is associated with high plankton productivity in Chesapeake Bay. Additionally, low DO conditions may confine most bay anchovy spawners to the downbay region, where production of larvae and juveniles is enhanced. A modified Ricker stock-recruitment model indicated density-compensatory recruitment with respect to SSB and demonstrated the importance of spring-summer DO levels and spatial distribution of SSB as controllers of bay anchovy recruitment
Congestion Pricing: Long-Term Economic and Land-Use Effects
We employ a spatially disaggregated general equilibrium model of a regional economy that incorporates decisions of residents, firms, and developers integrated with a spatially disaggregated strategic transportation planning (START) model that features mode, time period, and route choice to evaluate economic effects of congestion pricing. First, we evaluate the long-run effects of a road-pricing policy based on the integrated model of land use, strategic transport, and regional economy (LUSTRE) and compare them with the short-term effects obtained from the START model alone. We then look at distributional effects of the policy in question and point out differences and similarities in the short run versus the long run. Finally, we analyze the mechanisms at the source of the economic and land-use effects induced by the road-pricing policy.traffic congestion, welfare analysis, CGE modeling, cordon tolls, distributional effects
Long-Term Consequences of Congestion Pricing: A Small Cordon in the Hand Is Worth Two in the Bush
We evaluate and compare the long-term economic effects of three cordon-based road pricing schemes applied to the Washington, DC, metropolitan area. To conduct this analysis, we employ a spatially disaggregated general equilibrium model of a regional economy that incorporates the decisions of residents, firms, and developers, integrated with a spatially disaggregated strategic transportation planning model that features mode, time period, and route choice. We find that all cordon pricing schemes increase welfare of the residents, as well as lead to GDP growth. At the optimum, the larger cordon and a double cordon lead to higher benefits than the small cordon encompassing downtown core. Nevertheless, the small cordon seems to be a safer bet because when the toll charge is set suboptimally, the net benefits from the small cordon compared to the optimum change negligibly, while the net benefits from the larger cordon decline sharply as the charge deviates from the optimal level.traffic congestion, cordon tolls, land use, welfare analysis, road pricing, general equilibrium, simulation, Washington DC
Wave function recombination instability in cold atom interferometers
Cold atom interferometers use guiding potentials that split the wave function
of the Bose-Einstein condensate and then recombine it. We present theoretical
analysis of the wave function recombination instability that is due to the weak
nonlinearity of the condensate. It is most pronounced when the accumulated
phase difference between the arms of the interferometer is close to an odd
multiple of PI and consists in exponential amplification of the weak ground
state mode by the strong first excited mode. The instability exists for both
trapped-atom and beam interferometers.Comment: 4 pages, 5 figure
Testing Galactic Magnetic Field Models using Near-Infrared Polarimetry
This work combines new observations of NIR starlight linear polarimetry with
previously simulated observations in order to constrain dynamo models of the
Galactic magnetic field. Polarimetric observations were obtained with the Mimir
instrument on the Perkins Telescope in Flagstaff, AZ, along a line of constant
Galactic longitude (\ell = 150\circ) with 17 pointings of the 10' \times 10'
field of view between -75\circ < b < 10\circ, with more frequent pointings
towards the Galactic midplane. A total of 10,962 stars were photometrically
measured and 1,116 had usable polarizations. The observed distribution of
polarization position angles with Galactic latitude and the cumulative
distribution function of the measured polarizations are compared to predicted
values. While the predictions lack the effects of turbulence and are therefore
idealized, this comparison allows significant rejection of A0-type magnetic
field models. S0 and disk-even halo-odd magnetic field geometries are also
rejected by the observations, but at lower significance. New predictions of
spiral-type, axisymmetric magnetic fields, when combined with these new NIR
observations, constrain the Galactic magnetic field spiral pitch angle to
-6\circ \pm 2\circ.Comment: 11 pages, 10 figures, Accepted for publication in Ap
The Magnetic Field in Taurus Probed by Infrared Polarization
We present maps of the plane-of-sky magnetic field within two regions of the
Taurus molecular cloud: one in the dense core L1495/B213 filament, the other in
a diffuse region to the west. The field is measured from the polarization of
background starlight seen through the cloud. In total, we measured 287
high-quality near-infrared polarization vectors in these regions. In
L1495/B213, the percent polarization increases with column density up to Av ~ 9
mag, the limits of our data. The Radiative Torques model for grain alignment
can explain this behavior, but models that invoke turbulence are inconsistent
with the data. We also combine our data with published optical and
near-infrared polarization measurements in Taurus. Using this large sample, we
estimate the strength of the plane-of-sky component of the magnetic field in
nine subregions. This estimation is done with two different techniques that use
the observed dispersion in polarization angles. Our values range from 5-82
microgauss and tend to be higher in denser regions. In all subregions, the
critical index of the mass-to-magnetic flux ratio is sub-unity, implying that
Taurus is magnetically supported on large scales (~2 pc). Within the region
observed, the B213 filament makes a sharp turn to the north and the direction
of the magnetic field also takes a sharp turn, switching from being
perpendicular to the filament to becoming parallel. This behavior can be
understood if we are observing the rim of a bubble. We argue that it has
resulted from a supernova remnant associated with a recently discovered nearby
gamma-ray pulsar.Comment: Accepted into the Astrophysical Journal. 20 pages in emulateapj
format including 10 figures and 4 table
Polarisation Observations of HO 620.701 GHz Maser Emission with Herschel/HIFI in Orion KL
Context. The high intensities and narrow bandwidths exhibited by some
astronomical masers make them ideal tools for studying star-forming giant
molecular clouds. The water maser transition at
620.701 GHz can only be observed from above Earth's strongly absorbing
atmosphere; its emission has recently been detected from space. Aims. We sought
to further characterize the star-forming environment of Orion KL by
investigating the linear polarisation of a source emitting a narrow 620.701 GHz
maser feature with the heterodyne spectrometer HIFI on board the Herschel Space
Observatory. Methods. High-resolution spectral datasets were collected over a
thirteen month period beginning in 2011 March, to establish not only the linear
polarisation but also the temporal variability of the source. Results. Within a
uncertainty, no polarisation was detected to an upper limit of
approximately 2%. These results are compared with coeval linear polarisation
measurements of the 22.235 GHz maser line from
the Effelsberg 100-m radio telescope, typically a much stronger maser
transition. Although strongly polarised emission is observed for one component
of the 22.235 GHz maser at 7.2 km s, a weaker component at the same
velocity as the 620.701 GHz maser at 11.7 km s is much less polarised.Comment: Accepted for publication in A&
- …
