798 research outputs found

    A liquid helium target system for a measurement of parity violation in neutron spin rotation

    Full text link
    A liquid helium target system was designed and built to perform a precision measurement of the parity-violating neutron spin rotation in helium due to the nucleon-nucleon weak interaction. The measurement employed a beam of low energy neutrons that passed through a crossed neutron polarizer--analyzer pair with the liquid helium target system located between them. Changes between the target states generated differences in the beam transmission through the polarizer--analyzer pair. The amount of parity-violating spin rotation was determined from the measured beam transmission asymmetries. The expected parity-violating spin rotation of order 10610^{-6} rad placed severe constraints on the target design. In particular, isolation of the parity-odd component of the spin rotation from a much larger background rotation caused by magnetic fields required that a nonmagnetic cryostat and target system be supported inside the magnetic shielding, while allowing nonmagnetic motion of liquid helium between separated target chambers. This paper provides a detailed description of the design, function, and performance of the liquid helium target system.Comment: V2: 29 pages, 14 figues, submitted to Nucl. Instrum. Meth. B. Revised to address reviewer comment

    V2368 Oph: An eclipsing and double-lined spectroscopic binary used as a photometric comparison star for U Oph

    Full text link
    The A-type star HR 6412 = V2368 Oph was used by several investigators as a photometric comparison star for the known eclipsing binary U Oph but was found to be variable by three independent groups, including us. By analysing series of new spectral and photometric observations and a critical compilation of available radial velocities, we were able to find the correct period of light and radial-velocity variations and demonstrate that the object is an eclipsing and double-lined spectroscopic binary moving in a highly eccentric orbit. We derived a linear ephemeris T min.I = HJD (2454294.67 +/- 0.01) + (38.32712 +/- 0.00004)d x E and estimated preliminary basic physical properties of the binary. The dereddened UBV magnitudes and effective temperatures of the primary and secondary, based on our light- and velocity-curve solutions, led to distance estimates that agree with the Hipparcos distance within the errors. We find that the mass ratio must be close to one, but the limited number and wavelength range of our current spectra does not allow a truly precise determination of the binary masses. Nevertheless, our results show convincingly that both binary components are evolved away from the main sequence, which makes this system astrophysically very important. There are only a few similarly evolved A-type stars among known eclipsing binaries. Future systematic observations and careful analyses can provide very stringent tests for the stellar evolutionary theory.Comment: 10 pages, 7 figs, in press 2011 A&

    Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Full text link
    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs. (Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    A Search for Jet Handedness in Hadronic Z0Z^0 Decays

    Get PDF
    We have searched for signatures of polarization in hadronic jets from Z0qqˉZ^0 \to q \bar{q} decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure
    corecore