1,507 research outputs found

    Semi-leptonic and Non-leptonic BB meson decays to charmed mesons

    Full text link
    We study the semi-leptonic and non-leptonic BB weak decays which are governed by the BD()B\rightarrow D^{(*)} transitions. The branching ratios, CP asymmetries (CPA) and polarization fractions (FA) of non-leptonic decays are investigated in the factorization approximation. The BD()B\rightarrow D^{(*)} form factors are estimated in the Salpeter method. Our estimation on branching ratios generally agree with the existent experimental data. For CPA and polarizations, comparisons among the FA results, the perturbative QCD predictions and experimental data are made.Comment: 8 pages, 1 figures, 5 table

    Electronic Structure of KFe2_2Se2_2 from First Principles Calculations

    Full text link
    Electronic structure and magnetic properties for iron-selenide KFe2_2Se2_2 are studied by first-principles calculations. The ground state is stripe-like antiferromagnetic with calculated 2.26 μB\mu_B magnetic moment on Fe atoms; and the J1J_1, J2J_2 coupling strengths are calculated to be 0.038 eV and 0.029 eV. The states around EFE_F are dominated by the Fe-3d orbitals which hybridize noticeably to the Se-4p orbitals. While the band structure of KFe2_2Se2_2 is similar to a heavily electron-doped BaFe2_2As2_2 or FeSe system, the Fermi surface of KFe2_2Se2_2 is much closer to \fs11 system since the electron sheets around MM is symmetric with respect to xx-yy exchange. These features, as well as the absence of Fermi surface nesting, suggest that the parental KFe2_2Se2_2 could be regarded as an electron over-doped 11 system with possible local moment magnetism.Comment: accepted by Chinese Physics Letter, to appear as Chinese Physics Letter, Vol 28, page 057402 (2011

    A new approach to bulk viscosity in strange quark matter at high densities

    Full text link
    A new method is proposed to compute the bulk viscosity in strange quark matter at high densities. Using the method it is straightforward to prove that the bulk viscosity is positive definite, which is not so easy to accomplish in other approaches especially for multi-component fluids like strange quark matter with light up and down quarks and massive strange quarks.Comment: 7pages, talk given in SQM2008. Minor revisions, including clarification and updated reference

    Entanglement and quantum phase transition in quantum mixed spin chains

    Full text link
    The ground entanglement and thermal entanglement in quantum mixed spin chains consisting of two integer spins 1 and two half integer spins 1/2 arrayed as 1/21/211{1/2}-{1/2}-1-1 in a unit cell with antiferromagnetic nearest-neighbor couplings J1J_1(J2J_2) between the spins of equal (different) magnitudes, are investigated by adopting the log-negativity. The ground entanglement transition found here is closely related with the valence bond state transition, and the thermal entanglement near the critical point is calculated and shown that two distinct behaviors exist in the nearest neighbor same kind of spins and different kind of spins, respectively. The potential application of our results on the quantum information processing is also discussed.Comment: 5 pages, 4 figures, RevTex4, A minor correction is added into the figure captio

    Molecular weight effects on chain pull-out fracture of reinforced polymeric interfaces

    Full text link
    Using Brownian dynamics, we simulate the fracture of polymer interfaces reinforced by diblock connector chains. We find that for short chains the interface fracture toughness depends linearly on the degree of polymerization NN of the connector chains, while for longer chains the dependence becomes N3/2N^{3/2}. Based on the geometry of initial chain configuration, we propose a scaling argument that accounts for both short and long chain limits and crossover between them.Comment: 5 pages, 3 figure

    Absence of overscreened Kondo effect in ferromagnetic host

    Full text link
    We study the low temperature behavior of a boundary magnetic impurity S'=1/2 in an open ferromagnetic Takhatajian-Babujian spin-S chain. For antiferromagnetic Kondo coupling, it is show via Bethe ansatz solution that the impurity spin is always locked into the critical behavior the bulk. At low temperature, a local composite of spin S-1/2 forms near the impurity site and its contribution to specific heat is of simple power law T^{1/2}. The absence of overscreened Kondo effect is due to the large correlation length of host spins which is divergent near the quantum critical point.Comment: 4 pages. to appear in Phys. Rev. B1(R4A)(2000

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
    corecore