372 research outputs found
A Comparison of Benthic Oligochaete Populations in Acid and Neutral Lentic Environments in Southeastern Ohio
Author Institution: Department of Zoology and Microbiology, Ohio UniversityORCIARI, ROBERT D. AND WILLIAM D. HAMMON. A comparison of benthic oligochaete populations in acid and neutral lentic environments in Southeastern Ohio. Ohio J. Sci., 75(1): 44, 1975
New Limits on Local Lorentz Invariance in Mercury and Cesium
We report new bounds on Local Lorentz Invariance (LLI) violation in Cs and
Hg. The limits are obtained through the observation of the the spin- precession
frequencies of 199Hg and 133Cs atoms in their ground states as a function of
the orientation of an applied magnetic field with respect to the fixed stars.
We measure the amplitudes of the dipole couplings to a preferred direction in
the equatorial plane to be 19(11) nHz for Hg and 9(5) microHz for Cs. The upper
bounds established here improve upon previous bounds by about a factor of four.
The improvement is primarily due to mounting the apparatus on a rotating table.
New bounds are established on several terms in the standard model extension
including the first bounds on the spin-couplings of the neutron and proton to
the z direction, <7e-30 GeV and <7e-29 GeV, respectively.Comment: 17 pages, 6 figure
Adaptation of Cambarus bartonii cavatus (Hay) (Decapoda: Cambaridae) to Acid Mine-Polluted Waters
Author Institution: Department of Zoological and Biomedical Sciences, Ohio UniversityJuvenile crayfish [Cambarus bartonii cavatus] were taken from two nearby sites on Big Four Creek, Vinton County, OH. Water from upstream (UpS) and downstream (DnS) sites had total conductivities of 250 |iS and 600 \xS (|J,S = jimho/cm2) at 25° C. Non-carbonate conductivity was largely made up of sulfuric acid and heavy metals. Carbonates represented 40% of the conductivity at UpS but were absent from DnS. With only 100 (0.S of carbonate buffering capacity, water from UpS had little ability to neutralize acidic input, and this was easily overcome. Tests in seven solutions ranging between 250 (iS and 5000 \iS showed that: 1) mortality of crayfish was effected by the conductivity of test solutions, 2) DnS crayfish survived longer than UpS crayfish in all test conditions except the clean UpS water, and 3) there was no interaction term between source area and strength of conductivity on longevity. Attempts to acclimate crayfishes to higher levels of mine acid over short time periods were unsuccessful. Crayfish mortality under low acid conditions was not increased by addition of iron precipitate, though deaths were associated with ecdysis at intermediate and higher concentrations of mine acid. If DnS, but not UpS, crayfishes of this subspecies have acclimatized to intermediate concentrations of mine acid, then we infer a regime of semi-isolated reproduction over a short distance of streambed. Such an adaptation might have evolved following long—term exposure to low level, naturally—occurring acid seepage from coal outcrops, with success depending on the pre-adaptation of this subspecies to life in waters that are naturally low in carbonate buffering capacity
Information mobility in complex networks
The concept of information mobility in complex networks is introduced on the basis of a stochastic process taking place in the network. The transition matrix for this process represents the probability that the information arising at a given node is transferred to a target one. We use the fractional powers of this transition matrix to investigate the stochastic process at fractional time intervals. The mobility coefficient is then introduced on the basis of the trace of these fractional powers of the stochastic matrix. The fractional time at which a network diffuses 50% of the information contained in its nodes (1/ k50 ) is also introduced. We then show that the scale-free random networks display better spread of information than the non scale-free ones. We study 38 real-world networks and analyze their performance in spreading information from their nodes. We find that some real-world networks perform even better than the scale-free networks with the same average degree and we point out some of the structural parameters that make this possible
Hierarchy measure for complex networks
Nature, technology and society are full of complexity arising from the
intricate web of the interactions among the units of the related systems (e.g.,
proteins, computers, people). Consequently, one of the most successful recent
approaches to capturing the fundamental features of the structure and dynamics
of complex systems has been the investigation of the networks associated with
the above units (nodes) together with their relations (edges). Most complex
systems have an inherently hierarchical organization and, correspondingly, the
networks behind them also exhibit hierarchical features. Indeed, several papers
have been devoted to describing this essential aspect of networks, however,
without resulting in a widely accepted, converging concept concerning the
quantitative characterization of the level of their hierarchy. Here we develop
an approach and propose a quantity (measure) which is simple enough to be
widely applicable, reveals a number of universal features of the organization
of real-world networks and, as we demonstrate, is capable of capturing the
essential features of the structure and the degree of hierarchy in a complex
network. The measure we introduce is based on a generalization of the m-reach
centrality, which we first extend to directed/partially directed graphs. Then,
we define the global reaching centrality (GRC), which is the difference between
the maximum and the average value of the generalized reach centralities over
the network. We investigate the behavior of the GRC considering both a
synthetic model with an adjustable level of hierarchy and real networks.
Results for real networks show that our hierarchy measure is related to the
controllability of the given system. We also propose a visualization procedure
for large complex networks that can be used to obtain an overall qualitative
picture about the nature of their hierarchical structure.Comment: 29 pages, 9 figures, 4 table
Acid Mine Pollution : Effects on Survival, Reproduction and Aging of Stream Bottom Microinvertebrates
This study was supported by the Office of Water Research and Technology U.S, Department of the Interior under Project A-051-OHIO(print) 74 leaves in various foliations : ill. ; 28 cm
The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules
Beams of atoms and molecules are stalwart tools for spectroscopy and studies
of collisional processes. The supersonic expansion technique can create cold
beams of many species of atoms and molecules. However, the resulting beam is
typically moving at a speed of 300-600 m/s in the lab frame, and for a large
class of species has insufficient flux (i.e. brightness) for important
applications. In contrast, buffer gas beams can be a superior method in many
cases, producing cold and relatively slow molecules in the lab frame with high
brightness and great versatility. There are basic differences between
supersonic and buffer gas cooled beams regarding particular technological
advantages and constraints. At present, it is clear that not all of the
possible variations on the buffer gas method have been studied. In this review,
we will present a survey of the current state of the art in buffer gas beams,
and explore some of the possible future directions that these new methods might
take
On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH() + NH()
We present a detailed analysis of the role of the magnetic dipole-dipole
interaction in cold and ultracold collisions. We focus on collisions between
magnetically trapped NH molecules, but the theory is general for any two
paramagnetic species for which the electronic spin and its space-fixed
projection are (approximately) good quantum numbers. It is shown that dipolar
spin relaxation is directly associated with magnetic-dipole induced avoided
crossings that occur between different adiabatic potential curves. For a given
collision energy and magnetic field strength, the cross-section contributions
from different scattering channels depend strongly on whether or not the
corresponding avoided crossings are energetically accessible. We find that the
crossings become lower in energy as the magnetic field decreases, so that
higher partial-wave scattering becomes increasingly important \textit{below} a
certain magnetic field strength. In addition, we derive analytical
cross-section expressions for dipolar spin relaxation based on the Born
approximation and distorted-wave Born approximation. The validity regions of
these analytical expressions are determined by comparison with the NH + NH
cross sections obtained from full coupled-channel calculations. We find that
the Born approximation is accurate over a wide range of energies and field
strengths, but breaks down at high energies and high magnetic fields. The
analytical distorted-wave Born approximation gives more accurate results in the
case of s-wave scattering, but shows some significant discrepancies for the
higher partial-wave channels. We thus conclude that the Born approximation
gives generally more meaningful results than the distorted-wave Born
approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold
Quantum Matter - Achievements and Prospects (2011
- …
