1,751 research outputs found
On Protected Realizations of Quantum Information
There are two complementary approaches to realizing quantum information so
that it is protected from a given set of error operators. Both involve encoding
information by means of subsystems. One is initialization-based error
protection, which involves a quantum operation that is applied before error
events occur. The other is operator quantum error correction, which uses a
recovery operation applied after the errors. Together, the two approaches make
it clear how quantum information can be stored at all stages of a process
involving alternating error and quantum operations. In particular, there is
always a subsystem that faithfully represents the desired quantum information.
We give a definition of faithful realization of quantum information and show
that it always involves subsystems. This justifies the "subsystems principle"
for realizing quantum information. In the presence of errors, one can make use
of noiseless, (initialization) protectable, or error-correcting subsystems. We
give an explicit algorithm for finding optimal noiseless subsystems. Finding
optimal protectable or error-correcting subsystems is in general difficult.
Verifying that a subsystem is error-correcting involves only linear algebra. We
discuss the verification problem for protectable subsystems and reduce it to a
simpler version of the problem of finding error-detecting codes.Comment: 17 page
Categorification of persistent homology
We redevelop persistent homology (topological persistence) from a categorical
point of view. The main objects of study are diagrams, indexed by the poset of
real numbers, in some target category. The set of such diagrams has an
interleaving distance, which we show generalizes the previously-studied
bottleneck distance. To illustrate the utility of this approach, we greatly
generalize previous stability results for persistence, extended persistence,
and kernel, image and cokernel persistence. We give a natural construction of a
category of interleavings of these diagrams, and show that if the target
category is abelian, so is this category of interleavings.Comment: 27 pages, v3: minor changes, to appear in Discrete & Computational
Geometr
A new class of superregular matrices and MDP convolutional codes
This paper deals with the problem of constructing superregular
matrices that lead to MDP convolutional codes. These matrices are
a type of lower block triangular Toeplitz matrices with the property
that all the square submatrices that can possibly be nonsingular
due to the lower block triangular structure are nonsingular. We
present a new class of matrices that are superregular over a
sufficiently large finite field
F
. Such construction works for any
given choice of characteristic of the field
F
and code parameters
(
n
,
k
,δ)
such that
(
n
−
k
)
|
δ
. We also discuss the size of
F
needed
so that the proposed matrices are superregular
Early impact of rotavirus vaccination in a large paediatric hospital in the UK.
The impact of routine rotavirus vaccination on community-acquired (CA) and healthcare-associated (HA) rotavirus gastroenteritis (RVGE) at a large paediatric hospital, UK, was investigated over a 13-year period. A total of 1644 hospitalized children aged 0-15 years tested positive for rotavirus between July 2002 and June 2015. Interrupted time-series analysis demonstrated that, post vaccine introduction (July 2013 to June 2015), CA- and HA-RVGE hospitalizations were 83% [95% confidence interval (CI): 72-90%) and 83% (95% CI: 66-92%] lower than expected, respectively. Rotavirus vaccination has rapidly reduced the hospital rotavirus disease burden among both CA- and HA-RVGE cases
The effect of 12C + 12C rate uncertainties on s-process yields
The slow neutron capture process in massive stars (the weak s-process)
produces most of the s-only isotopes in the mass region 60 < A < 90. The
nuclear reaction rates used in simulations of this process have a profound
effect on the final s-process yields. We generated 1D stellar models of a 25
solar mass star varying the 12C + 12C rate by a factor of 10 and calculated
full nucleosynthesis using the post-processing code PPN. Increasing or
decreasing the rate by a factor of 10 affects the convective history and
nucleosynthesis, and consequently the final yields.Comment: Conference proceedings for the Nuclear Physics in Astrophysics IV
conference, 8-12 June 2009. 4 pages, 3 figures. Accepted for publication to
the Journal of Physics: Conference Serie
Recommended from our members
New limits on heavy sterile neutrino mixing in -decay obtained with the Borexino detector
If heavy neutrinos with mass 2 are produced in the
Sun via the decay in a side
branch of pp-chain, they would undergo the observable decay into an electron, a
positron and a light neutrino . In the
present work Borexino data are used to set a bound on the existence of such
decays. We constrain the mixing of a heavy neutrino with mass 1.5 MeV 14 MeV to be
respectively. These are tighter limits on the mixing parameters than obtained
in previous experiments at nuclear reactors and accelerators.Comment: 7 pages, 6 figure
The Main Results of the Borexino Experiment
The main physical results on the registration of solar neutrinos and the
search for rare processes obtained by the Borexino collaboration to date are
presented.Comment: 8 pages, 8 figgures, To be published as Proceedings of the Third
Annual Large Hadron Collider Physics Conference, St. Petersburg, Russia, 201
- …
