484 research outputs found
The relative value of recall and recognition techniques for measuring precise knowledge of word meaning nouns, verbs, adjectives
Thesis (Ed.D.)--Boston University. This item was digitized by the Internet Archive
Sampling strategies and four-dimensional assimilation of altimetric data for ocean monitoring and prediction
Numerical experiments using simulated altimeter data were conducted in order to examine the assimilation of altimeter-derived sea surface heights into numerical ocean circulation models. A reduced-gravity, primitive equation circulation model of the Gulf of Mexico was utilized; the Gulf of Mexico was chosen because of its amenability to modeling and the ability of low vertical-mode models to reproduce the observed dynamical features of the Gulf circulation. The simulated data were obtained by flying an imaginary altimeter over the model ocean and sampling the model sea surface just as real altimeter would observe the true ocean. The data were used to initialize the numerical model and the subsequent forecast was compared to the true numerical solution. Results indicate that for a stationary, circular eddy, approximately three to four tracks (either ascending or descending) across the eddy are sufficient to ensure adequate spatial resolution
Complete Models of Axisymmetric Sunspots: Magnetoconvection with Coronal Heating
We present detailed results of numerical experiments into the nature of complete sunspots. The models
remain highly idealized but include fully nonlinear compressible magnetoconvection in an axisymmetric layer
that drives energy into an overlying, low-B plasma. We survey a range of parameters in which the resulting
magnetoconvection displays the formation of pore- and sunspot-like behavior and assess the coronal signatures
resulting from the energy generated by the magnetoconvection. The coronal heating is assumed to be a
result of the dissipation by an unspecified means of a fraction of the Poynting flux entering the corona. The
expected signatures in the EUV and soft X-ray bandpasses of the Transition Region and Coronal Explorer
and Yohkoh/SXT, respectively, are examined. This ad hoc coupling of the corona to the subphotospheric
region results in a dynamical behavior that is consistent with recent observational results. This agreement
demonstrates that even simple coupled modeling can lead to diagnostics for investigations of both subphotospheric
sunspot structures and coronal heating mechanisms
Estimating Electric Fields from Vector Magnetogram Sequences
Determining the electric field (E-field) distribution on the Sun's
photosphere is essential for quantitative studies of how energy flows from the
Sun's photosphere, through the corona, and into the heliosphere. This E-field
also provides valuable input for data-driven models of the solar atmosphere and
the Sun-Earth system. We show how Faraday's Law can be used with observed
vector magnetogram time series to estimate the photospheric E-field, an
ill-posed inversion problem. Our method uses a "poloidal-toroidal
decomposition" (PTD) of the time derivative of the vector magnetic field. The
PTD solutions are not unique; the gradient of a scalar potential can be added
to the PTD E-field without affecting consistency with Faraday's Law. We present
an iterative technique to determine a potential function consistent with ideal
MHD evolution; but this E-field is also not a unique solution to Faraday's Law.
Finally, we explore a variational approach that minimizes an energy functional
to determine a unique E-field, similar to Longcope's "Minimum Energy Fit". The
PTD technique, the iterative technique, and the variational technique are used
to estimate E-fields from a pair of synthetic vector magnetograms taken from an
MHD simulation; and these E-fields are compared with the simulation's known
electric fields. These three techniques are then applied to a pair of vector
magnetograms of solar active region NOAA AR8210, to demonstrate the methods
with real data.Comment: 41 pages, 10 figure
An Interface Region Imaging Spectrograph first view on Solar Spicules
Solar spicules have eluded modelers and observers for decades. Since the
discovery of the more energetic type II, spicules have become a heated topic
but their contribution to the energy balance of the low solar atmosphere
remains unknown. Here we give a first glimpse of what quiet Sun spicules look
like when observed with NASA's recently launched Interface Region Imaging
Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the
chromosphere and transition region we compare the properties and evolution of
spicules as observed in a coordinated campaign with Hinode and the Atmospheric
Imaging Assembly. Our IRIS observations allow us to follow the thermal
evolution of type II spicules and finally confirm that the fading of Ca II H
spicules appears to be caused by rapid heating to higher temperatures. The IRIS
spicules do not fade but continue evolving, reaching higher and falling back
down after 500-800 s. Ca II H type II spicules are thus the initial stages of
violent and hotter events that mostly remain invisible in Ca II H filtergrams.
These events have very different properties from type I spicules, which show
lower velocities and no fading from chromospheric passbands. The IRIS spectra
of spicules show the same signature as their proposed disk counterparts,
reinforcing earlier work. Spectroheliograms from spectral rasters also confirm
that quiet Sun spicules originate in bushes from the magnetic network. Our
results suggest that type II spicules are indeed the site of vigorous heating
(to at least transition region temperatures) along extensive parts of the
upward moving spicular plasma.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters. For
associated movies, see http://folk.uio.no/tiago/iris_spic
Global ocean modeling and state estimation in support of climate research
During the last decade it has become obvious that the ocean circulation shows vigorous variability on a wide range of time and space scales and that the concept of a "sluggish" and slowly varying circulation is rather elusive. Increasing emphasis has to be put, therefore, on observing the rapidly changing ocean state on time scales ranging from weeks to decades and beyond, and on understanding the ocean's response to changing atmospheric forcing conditions. As outlined in various strategy and implementation documents (e.g., the implementation plans of WOCE, AMS, CLIVAR, and GODAE) a combination of the global ocean data sets with a state-of-the-art numerical circulation model is required to interpret the various diverse data sets and to produce the best possible estimates of the time-varying ocean circulation. The mechanism of ocean state estimates is a powerful tool for such a "synthesis" of observations, obtained on very complex space-time pattern, into one dynamically consistent picture of the global time-evolving ocean circulation. This process has much in common with ongoing analysis and reanalysis activities in the atmospheric community. But because the ocean is, and will remain for the foreseeable future, substantially under-sampled, the burden put on the modeling and estimations components is substantially larger than in the atmosphere. Moreover, the smaller dynamical eddy scales which need to be properly parameterized or resolved in ocean model simulations, put stringent requirements on computational resources for ongoing and participated climate research
Heliophysics Event Knowledgebase for the Solar Dynamics Observatory and Beyond
The immense volume of data generated by the suite of instruments on SDO
requires new tools for efficient identifying and accessing data that is most
relevant to research investigations. We have developed the Heliophysics Events
Knowledgebase (HEK) to fill this need. The HEK system combines automated data
mining using feature-detection methods and high-performance visualization
systems for data markup. In addition, web services and clients are provided for
searching the resulting metadata, reviewing results, and efficiently accessing
the data. We review these components and present examples of their use with SDO
data.Comment: 17 pages, 4 figure
Homologous Helical Jets: Observations by IRIS, SDO and Hinode and Magnetic Modeling with Data-Driven Simulations
We report on observations of recurrent jets by instruments onboard the
Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO)
and Hinode spacecrafts. Over a 4-hour period on July 21st 2013, recurrent
coronal jets were observed to emanate from NOAA Active Region 11793. FUV
spectra probing plasma at transition region temperatures show evidence of
oppositely directed flows with components reaching Doppler velocities of +/-
100 km/s. Raster Doppler maps using a Si IV transition region line show all
four jets to have helical motion of the same sense. Simultaneous observations
of the region by SDO and Hinode show that the jets emanate from a source region
comprising a pore embedded in the interior of a supergranule. The parasitic
pore has opposite polarity flux compared to the surrounding network field. This
leads to a spine-fan magnetic topology in the coronal field that is amenable to
jet formation. Time-dependent data-driven simulations are used to investigate
the underlying drivers for the jets. These numerical experiments show that the
emergence of current-carrying magnetic field in the vicinity of the pore
supplies the magnetic twist needed for recurrent helical jet formation.Comment: 15 pages, 10 figures, accepted by Ap
- …
