2,481 research outputs found
Sub-Zero Alteration in an Isotopically Heavy Brine Preserved in a Pristine H Chondrite Xenolith
Introduction: Brecciated H chondrites host a variety of xenoliths, including unshocked, phyllo- silicate-rich carbonaceous chondrites (CCs). The brecciated H chondrite Zag (H3-6) is one of two chondrites to host macroscopic (1 - 5mm), xenolithic crystals of halite (NaCl) with aqueous fluid inclusions and organics. A ~1cm CC xenolith in Zag (Zag clast) has mineralogy similar to CI chondrites, but it has a unique bulk oxygen isotopic composition among all meteorites ((exp 17)O = 1.49 0.04 , (exp 18)O = 22.38 0.17 ). The Zag clast encloses halite in its matrix, linking the coarse, matrix halite and the xenolith to the same parent object, suggested to be hydrovolcanically active. Its bulk C and N contents are the highest among chondrites and bulk (exp 15)N is similar to CR chondrites and Bells. Insoluble organic material (IOM) in the Zag clast has D and (exp 15)N hotspots, also similar to CR chondrites and Bells (C2-ung.). We provide further isotopic characterization of the Zag clast to constrain the formation temperature and origin of its primary and secondary components
The solar oxygen-isotopic composition: Predictions and implications for solar nebula processes
The outer layers of the Sun are thought to preserve the average isotopic and chemical composition of the solar system. The solar O-isotopic composition is essentially unmeasured, though models based on variations in meteoritic materials yield several predictions. These predictions are reviewed and possible variations on these predictions are explored. In particular, the two-component mixing model of Clayton and Mayeda (1984) (slightly revised here) predicts solar compositions to lie along an extension of the calcium-aluminum-rich inclusion (CAI) ^(16)O line between (δ^(18)O, δ^(17)O) = (16.4, 11.4)%0 and (12.3, 7.5)%0. Consideration of data from ordinary chondrites suggests that the range of predicted solar composition should extend to slightly lower δ^(18)O values. The predicted solar composition is critically sensitive to the solid/gas ratio in the meteorite-forming region, which is often considered to be significantly enriched over solar composition. A factor of two solid/gas enrichment raises the predicted solar (δ^(18)O, δ^(17)O) values along an extension of the CAI ^(16)O line to (33, 28)%0. The model is also sensitive to the nebular O gas phase. If conversion of most of the gaseous O from CO to H_2O occurred at relatively low temperatures and was incomplete at the time of CM aqueous alteration, the predicted nebular gas composition (and hence the solar composition) would be isotopically heavier along a slope 1/2 line. The likelihood of having a single solid nebular O component is discussed. A distribution of initial solid compositions along the CAI ^(16)O line (rather than simply as an end-member) would not significantly change the predictions above in at least one scenario. Even considering these variations within the mixing model, the predicted range of solar compositions is distinct from that expected if the meteoritic variations are due to non-mass-dependent fractionation. Thus, a measurement of the solar O composition to a precision of several permil would clearly distinguish between these theories and should clarify a number of other important issues regarding solar system formation
An operative gamma camera for sentinel lymph node procedure in case of breast cancer
Large field of view gamma cameras are widely used to perform lymphoscintigraphy in the sentinel lymph nodes (SLN) procedure in case of breast cancer. However, they are not specified for this application and their sizes do not enable their use in the operative room to control the excision of the all SLN. We present the results obtained with a prototype of a new mini gamma camera developed especially for the operative lymphoscintigraphy of the axillary area in case of breast cancer. This prototype is composed of 10 mm thick parallel lead collimator, a 2 mm thick GSO:Ce inorganic scintillating crystal from Hitachi and a Hamamatsu H8500 flat panel multianode (64 channels) photomultiplier tube (MAPMT) equipped with a dedicated electronics. Its actual field of view is 50 × 50mm2. The gamma interaction position in the GSO scintillating plate is obtained by calculating the center of gravity of the fired MAPMT channels. The measurements performed with this prototype demonstrate the usefulness of this mini gamma camera for the pre, per and post-operative identification of SLN's and how its complementary role with an intraoperative handheld gamma probe enables to improve the efficiency of this practice. A 100 × 100mm2 field of view camera designated to cover the entire axillary area is under investigation
Isotopes of H, N, and O in H Chondrite Xenoliths
Brecciated H chrondites host a variety of xenoliths, including unshocked, phyllosilate-rich carbonaceous chondrites (CCs) [1-2]. The brecciated H chondrite Zag (H3-6) is one of two chondrites to host macroscopic (1 - 5mm), xenolithic crystals of halite (NaCl) with aqueous fluid inclusions and organics [3-4]. A ~1cm CC xenolith in Zag (Zag clast) also encloses halite in its matrix, linking the halite and the xenolith to the same parent object. The Zag clast has mineralogy similar to CI chondrites, but it has a unique bulk oxygen isotopic composition among all meteorites (17O = 1.49 0.04 , 18O = 22.38 0.17 ) and is therefore derived from a uniquely sampled parent object [5-6]. Organics have high bulk D and 15N values with isotopic "hotspots" similar to organics in CR chondrites and Bells (C2-ung.) [6-7]. Bulk 15N is also similar to CRs and Bells [7]. We provide further isotopic characterization of the Zag clast to constrain the formation temperature and origin of its primary and secondary components
Determining the Elemental and Isotopic Composition of the preSolar Nebula from Genesis Data Analysis: The Case of Oxygen
We compare element and isotopic fractionations measured in solar wind samples
collected by NASA's Genesis mission with those predicted from models
incorporating both the ponderomotive force in the chromosphere and conservation
of the first adiabatic invariant in the low corona. Generally good agreement is
found, suggesting that these factors are consistent with the process of solar
wind fractionation. Based on bulk wind measurements, we also consider in more
detail the isotopic and elemental abundances of O. We find mild support for an
O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A
stronger conclusion must await solar wind regime specific measurements from the
Genesis samples.Comment: 6 pages, accepted by Astrophysical Journal Letter
Wikipedia as an encyclopaedia of life
In his 2003 essay E O Wilson outlined his vision for an “encyclopaedia of life” comprising “an electronic page for each species of organism on Earth”, each page containing “the scientific name of the species, a pictorial or genomic presentation of the primary type specimen on which its name is based, and a summary of its diagnostic traits.” Although the “quiet revolution” in biodiversity informatics has generated numerous online resources, including some directly inspired by Wilson's essay (e.g., "http://ispecies.org":http://ispecies.org, "http://www.eol.org":http://www.eol.org), we are still some way from the goal of having available online all relevant information about a species, such as its taxonomy, evolutionary history, genomics, morphology, ecology, and behaviour. While the biodiversity community has been developing a plethora of databases, some with overlapping goals and duplicated content, Wikipedia has been slowly growing to the point where it now has over 100,000 pages on biological taxa. My goal in this essay is to explore the idea that, largely independent of the efforts of biodiversity informatics and well-funded international efforts, Wikipedia ("http://en.wikipedia.org/wiki/Main_Page":http://en.wikipedia.org/wiki/Main_Page) has emerged as potentially the best platform for fulfilling E O Wilson’s vision
Oxygen, Magnesium, and Aluminum Isotopes in the Ivuna CAI: Re-Examining High-Temperature Fractionations in CI Chondrites
CI chondrites are thought to approximate the bulk solar system composition since they closely match the composition of the solar photosphere. Thus, chemical differences between a planetary object and the CI composition are interpreted to result from fractionations of a CI starting composition. This interpretation is often made despite the secondary mineralogy of CI chondrites, which resulted from low-T aqueous alteration on the parent asteroid(s). Prevalent alteration and the relatively large uncertainties in the photospheric abundances (approx. +/-5-10%) permit chemical fractionation of CI chondrites from the bulk solar system, if primary chondrules and/or CAIs have been altered beyond recognition. Isolated olivine and pyroxene grains that range from approx. 5 microns to several hundred microns have been reported in CI chondrites, and acid residues of Orgueil were found to contain refractory oxides with oxygen isotopic compositions matching CAIs. However, the only CAI found to be unambiguously preserved in a CI chondrite was identified in Ivuna. The Ivuna CAI's primary mineralogy, small size (approx.170 microns), and fine-grained igneous texture classify it as a compact type A. Aqueous alteration infiltrated large portions of the CAI, but other regions remain pristine. The major primary phases are melilite (Ak 14-36 ), grossmanite (up to 20.8 wt.% TiO 2 ), and spinel. Both melilite and grossmanite have igneous textures and zoning patterns. An accretionary rim consists primarily of olivine (Fa 2-17 ) and low-Ca pyroxene (Fs 2-10 ), which could be either surviving CI2 material or a third lithology
Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration
We experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering
Nonspherical similarity solutions for dark halo formation
We carry out fully 3-dimensional simulations of evolution from self-similar,
spherically symmetric linear perturbations of a Cold Dark Matter dominated
Einstein-de Sitter universe. As a result of the radial orbit instability, the
haloes which grow from such initial conditions are triaxial with major-to-minor
axis ratios of order 3:1. They nevertheless grow approximately self-similarly
in time. In all cases they have power-law density profiles and near-constant
velocity anisotropy in their inner regions. Both the power-law index and the
value of the velocity anisotropy depend on the similarity index of the initial
conditions, the former as expected from simple scaling arguments. Halo
structure is thus not "universal" but remembers the initial conditions. On
larger scales the density and anisotropy profiles show two characteristic
scales, corresponding to particles at first pericentre and at first apocentre
after infall. They are well approximated by the NFW model only for one value of
the similarity index. In contrast, at all radii within the outer caustic the
pseudo phase-space density can be fit by a single power law with an index which
depends only very weakly on the similarity index of the initial conditions.
This behaviour is very similar to that found for haloes formed from LCDM
initial conditions and so can be considered approximately universal.Comment: 8 pages, 7 figures, submitted to MNRA
Influência da densidade na produção de massa verde do sorgo forrageiro (Sorghum bicolor) no agreste de Pernambuco.
Um experimento em fatorial foi conduzido em 1974 na Estação Experimentpl de Surubim na zona do Agreste de Pernambuco, com sorgo forrageiro (Sorghum bicolor Moench, Meth) adubado, testando-se três espaçamentos entre fileiras 0,60; 0,80 e 1,Om, com binados com três densidades de plantio por metro linear, a saber: 15, 20 e 25 unidades por metro linear. A produção mais alta 31,5 t/ha após dois cortes, foi observada no espaçamento de 0,60 m en tre fileiras e 20 plantas por metro linear, que foi significativamente superior ao nivel de 5% pelo teste de Tukey, apenas aos quatro tratamentos mais baixos, nos espaçamentos de 0,80 e 1,0 m combinados com 20 e 15 plantas por metro linear. O espaçamento de 0,60 m entre fileiras considerado como um grupo que foi significativamente superior aos outros dois espaçamentos de 0,80 e 1,0 m, o mesmo ocorrendo com 25 plantas por metro linear, em relação a 20 e 15 plantas.bitstream/item/139849/1/35429-1.pd
- …
