10,320 research outputs found
Spitzer 70-micron Confusion Level
Spitzer 70μm confusion measurements are presented based on ultra-deep MIPS-70μm observations of GOODS Hubble Deep Field North (HDFN). The instrument noise for the MIPS-70μm band integrates down with nearly t^(−0.5) for the low background HDF-N field. The estimated confusion level is σ_c = 0.30 ± 0.15mJy for a limiting flux density of 1.5mJy (q = 5)
A Non-Destructive Crack Detection Technique Using Vibration Tests
A method of structural damage detection using non-destructive vibration test is presented. It uses the Frequency Response Function (FRF) data and a finite element model of the virgin structure to construct and display Damage Location Vector (DLV). It is shown that DLV can detect, locate and assess the extent of damage. By using the raw FRF data and its wealth of information, DLV can handle experimental noise and the inherent incompleteness of data
Crowdsourcing complex workflows under budget constraints
We consider the problem of task allocation in crowdsourcing systems with multiple complex workflows, each of which consists of a set of interdependent micro-tasks. We propose Budgeteer, an algorithm to solve this problem under a budget constraint. In particular, our algorithm first calculates an efficient way to allocate budget to each workflow. It then determines the number of inter-dependent micro-tasks and the price to pay for each task within each workflow, given the corresponding budget constraints. We empirically evaluate it on a well-known crowdsourcing-based text correction workflow using Amazon Mechanical Turk, and show that Budgeteer can achieve similar levels of accuracy to current benchmarks, but is on average 45% cheaper
Partner orbits and action differences on compact factors of the hyperbolic plane. Part I: Sieber-Richter pairs
Physicists have argued that periodic orbit bunching leads to universal
spectral fluctuations for chaotic quantum systems. To establish a more detailed
mathematical understanding of this fact, it is first necessary to look more
closely at the classical side of the problem and determine orbit pairs
consisting of orbits which have similar actions. In this paper we specialize to
the geodesic flow on compact factors of the hyperbolic plane as a classical
chaotic system. We prove the existence of a periodic partner orbit for a given
periodic orbit which has a small-angle self-crossing in configuration space
which is a `2-encounter'; such configurations are called `Sieber-Richter pairs'
in the physics literature. Furthermore, we derive an estimate for the action
difference of the partners. In the second part of this paper [13], an inductive
argument is provided to deal with higher-order encounters.Comment: to appear on Nonlinearit
Effects of lattice distortion and Jahn–Teller coupling on the magnetoresistance of La0.7Ca0.3MnO3 and La0.5Ca0.5CoO3 epitaxial films
Studies of La0.7Ca0.3MnO3 epitaxial films on substrates with a range of lattice constants reveal two dominant contributions to the occurrence of colossal negative magnetoresistance (CMR) in these manganites: at high temperatures (T → TC, TC being the Curie temperature), the magnetotransport properties are predominantly determined by the conduction of lattice polarons, while at low temperatures (T ≪ TC/, the residual negative magnetoresistance is correlated with the substrate-induced lattice distortion which incurs excess magnetic domain wall scattering. The importance of lattice polaron conduction associated with the presence of Jahn–Teller coupling in the manganites is further verified by comparing the manganites with epitaxial films of another ferromagnetic perovskite, La0.5Ca0.5CoO3. Regardless of the differences in the substrate-induced lattice distortion, the cobaltite films exhibit much smaller negative magnetoresistance, which may be attributed to the absence of Jahn–Teller coupling and the high electron mobility that prevents the formation of lattice polarons. We therefore suggest that lattice polaron conduction associated with the Jahn–Teller coupling is essential for the occurrence of CMR, and that lattice distortion further enhances the CMR effects in the manganites
The ART of IAM: The Winning Strategy for the 2006 Competition
In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)
The ART of IAM: The Winning Strategy for the 2006 Competition
In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)
Entire holomorphic curves into projective spaces intersecting a generic hypersurface of high degree
In this note, we establish the following Second Main Theorem type estimate for every entire non-algebraically degenerate holomorphic curve , in present of a {\slgeneric} hypersuface of sufficiently high degree : where and stand for the order function and the -truncated counting function in Nevanlinna theory. This inequality quantifies recent results on the logarithmic Green-Griffiths conjecture
- …
