886,568 research outputs found

    Mechanism of half-frequency electric dipole spin resonance in double quantum dots: Effect of nonlinear charge dynamics inside the singlet manifold

    Full text link
    Electron dynamics in quantum dots manifests itself in spin-flip spectra through electric dipole spin resonance (EDSR). Near a neutrality point separating two different singlet charged states of a double quantum dot, charge dynamics inside a 2×22\times2 singlet manifold can be described by a 1/2-pseudospin. In this region, charge dynamics is highly nonlinear and strongly influenced by flopping its soft pseudospin mode. As a result, the responses to external driving include first and second harmonics of the driving frequency and their Raman satellites shifted by the pseudospin frequency. In EDSR spectra of a spin-orbit couplet doublet dot, they manifest themselves as charge satellites of spin-flip transitions. The theory describes gross features of the anomalous half-frequency EDSR in spin blockade spectra [Laird et al., Semicond. Sci. Techol. {\bf 24}, 064004 (2009)].Comment: One figure, one equation, comments adde

    Graphene with Structure-Induced Spin-Orbit Coupling: Spin-Polarized States, Spin Zero Modes, and Quantum Hall Effect

    Full text link
    Spin splitting of the energy spectrum of single-layer graphene on Au/Ni(111) substrate has been recently reported. I show that eigenstates of spin-orbit coupled graphene are polarized in-plane and perpendicular to electron momentum k\bf k; the magnitude of spin polarization S\bf S vanishes when k0k \to 0. In a perpendicular magnetic field B\bf B, S\bf S is parallel to B\bf B, and two zero modes emerge in the Landau level spectrum. Singular B\bf B-dependence of their magnetization suggests existence of a novel magnetic instability. They also manifest themselves in a new unconventional quantum Hall effect.Comment: 4 pages, 1 figur

    Quantum nanostructures in strongly spin-orbit coupled two-dimensional systems

    Full text link
    Recent progress in experimental studies of low-dimensional systems with strong spin-orbit coupling poses a question on the effect of this coupling on the energy spectrum of electrons in semiconductor nanostructures. It is shown in the paper that this effect is profound in the strong coupling limit. In circular quantum dots a soft mode develops, in strongly elongated dots electron spin becomes protected from the effects of the environment, and the lower branch of the energy spectrum of quantum wires becomes nearly flat in a wide region of the momentum space.Comment: 5 pages, 1 figur

    Two Anderson impurities in a 2D host with Rashba spin-orbit interaction

    Full text link
    We have studied the two-dimensional two-impurity Anderson model with additional Rashba spin-orbit interaction by means of the modified perturbation theory. The impurity Green's functions we have constructed exactly reproduce the first four spectral moments. We discuss the height and the width of the even/odd Kondo peaks as functions of the inter-impurity distance and the Rashba energy ERE_R (the strength of the Rashba spin-orbit interaction). For small impurity separations the Kondo temperature shows a non-monotonic dependence on ERE_R being different in the even and the odd channel. We predict that the Kondo temperature has only almost linear dependence on ERE_R and not an exponential increase with ERE_RComment: To be published in Phys. Rev.

    Generating artificial light curves: Revisited and updated

    Full text link
    The production of artificial light curves with known statistical and variability properties is of great importance in astrophysics. Consolidating the confidence levels during cross-correlation studies, understanding the artefacts induced by sampling irregularities, establishing detection limits for future observatories are just some of the applications of simulated data sets. Currently, the widely used methodology of amplitude and phase randomisation is able to produce artificial light curves which have a given underlying power spectral density (PSD) but which are strictly Gaussian distributed. This restriction is a significant limitation, since the majority of the light curves e.g. active galactic nuclei, X-ray binaries, gamma-ray bursts show strong deviations from Gaussianity exhibiting `burst-like' events in their light curves yielding long-tailed probability distribution functions (PDFs). In this study we propose a simple method which is able to precisely reproduce light curves which match both the PSD and the PDF of either an observed light curve or a theoretical model. The PDF can be representative of either the parent distribution or the actual distribution of the observed data, depending on the study to be conducted for a given source. The final artificial light curves contain all of the statistical and variability properties of the observed source or theoretical model i.e. same PDF and PSD, respectively. Within the framework of Reproducible Research, the code, together with the illustrative example used in this manuscript, are both made publicly available in the form of an interactive Mathematica notebook.Comment: Accepted for publication in MNRAS. The paper is 23 pages long and contains 21 figures and 2 tables. The Mathematica notebook can be found in the web as part of this paper (Online Material) or at http://www.astro.soton.ac.uk/~de1e08/ArtificialLightCurves

    Manipulating the spin texture in spin-orbit superlattice by terahertz radiation

    Full text link
    The spin texture in a gate-controlled superlattice with Rashba spin-orbit coupling is studied in the presence of external terahertz radiation causing the superlattice miniband transitions. It is shown that the local distribution of spin density can be flipped by tuning the radiation intensity, allowing the controlled coupling of spins and photons with different polarizations.Comment: 5 pages, 3 figure
    corecore