2,699 research outputs found

    Rotating "Black Holes" with Holes in the Horizon

    Full text link
    Kerr-Schild solutions of the Einstein-Maxwell field equations, containing semi-infinite axial singular lines, are investigated. It is shown that axial singularities break up the black hole, forming holes in the horizon. As a result, a tube-like region appears which allows matter to escape from the interior without crossing the horizon. It is argued that axial singularities of this kind, leading to very narrow beams, can be created in black holes by external electromagnetic or gravitational excitations and may be at the origin of astrophysically observable effects such as jet formation.Comment: Revtex, 6 pages, 3 figures. Corrected version. To appear in Phys Rev D, Rapid Communication

    Theoretical framework for quantum networks

    Full text link
    We present a framework to treat quantum networks and all possible transformations thereof, including as special cases all possible manipulations of quantum states, measurements, and channels, such as, e.g., cloning, discrimination, estimation, and tomography. Our framework is based on the concepts of quantum comb-which describes all transformations achievable by a given quantum network-and link product-the operation of connecting two quantum networks. Quantum networks are treated both from a constructive point of view-based on connections of elementary circuits-and from an axiomatic one-based on a hierarchy of admissible quantum maps. In the axiomatic context a fundamental property is shown, which we call universality of quantum memory channels: any admissible transformation of quantum networks can be realized by a suitable sequence of memory channels. The open problem whether this property fails for some nonquantum theory, e.g., for no-signaling boxes, is posed.Comment: 23 pages, revtex

    Statistics of non-linear stochastic dynamical systems under L\'evy noises by a convolution quadrature approach

    Full text link
    This paper describes a novel numerical approach to find the statistics of the non-stationary response of scalar non-linear systems excited by L\'evy white noises. The proposed numerical procedure relies on the introduction of an integral transform of Wiener-Hopf type into the equation governing the characteristic function. Once this equation is rewritten as partial integro-differential equation, it is then solved by applying the method of convolution quadrature originally proposed by Lubich, here extended to deal with this particular integral transform. The proposed approach is relevant for two reasons: 1) Statistics of systems with several different drift terms can be handled in an efficient way, independently from the kind of white noise; 2) The particular form of Wiener-Hopf integral transform and its numerical evaluation, both introduced in this study, are generalizations of fractional integro-differential operators of potential type and Gr\"unwald-Letnikov fractional derivatives, respectively.Comment: 20 pages, 5 figure

    Covariant quantum measurements which maximize the likelihood

    Full text link
    We derive the class of covariant measurements which are optimal according to the maximum likelihood criterion. The optimization problem is fully resolved in the case of pure input states, under the physically meaningful hypotheses of unimodularity of the covariance group and measurability of the stability subgroup. The general result is applied to the case of covariant state estimation for finite dimension, and to the Weyl-Heisenberg displacement estimation in infinite dimension. We also consider estimation with multiple copies, and compare collective measurements on identical copies with the scheme of independent measurements on each copy. A "continuous-variables" analogue of the measurement of direction of the angular momentum with two anti-parallel spins by Gisin and Popescu is given.Comment: 8 pages, RevTex style, submitted to Phys. Rev.

    Ferroelectric precursor behavior in PbSc0.5Ta0.5O3 detected by field-induced resonant piezoelectric spectroscopy

    Get PDF
    A novel experimental technique, resonant piezoelectric spectroscopy (RPS), has been applied to investigate polar precursor effects in highly (65%) B-site ordered PbSc0.5Ta0.5O3 (PST), which undergoes a ferroelectric phase transition near 300 K. The cubic-rhombohedral transition is weakly first order, with a coexistence interval of ∼4 K, and is accompanied by a significant elastic anomaly over a wide temperature interval. Precursor polarity in the cubic phase was detected as elastic vibrations generated by local piezoelectric excitations in the frequency range 250–710 kHz. The RPS resonance frequencies follow exactly the frequencies of elastic resonances generated by conventional resonant ultrasound spectroscopy (RUS) but RPS signals disappear on heating beyond an onset temperature, Tonset, of 425 K. Differences between the RPS and RUS responses can be understood if the PST structure in the precursor regime between Tonset and the transition point, Ttrans=300 K, has locally polar symmetry even while it remains macroscopically cubic. It is proposed that this precursor behavior could involve the development of a tweed microstructure arising by coupling between strain and multiple order parameters, which can be understood from the perspective of Landau theory. As a function of temperature the transition is driven by the polar displacement P and the order parameter for cation ordering on the crystallographic B site Qod. Results in the literature show that, as a function of pressure, there is a separate instability driven by octahedral tilting for which the assigned order parameter is Q. The two mainly displacive order parameters, P and Q, are unfavorably coupled via a biquadratic term Q2P2, and complex tweedlike fluctuations in the precursor regime would be expected to combine aspects of all the order parameters. This would be different from the development of polar nanoregions, which are more usually evoked to explain relaxor ferroelectric behavior, such as occurs in PST with a lower degree of B-site order

    Probabilistic theories with purification

    Get PDF
    We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, namely that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum mechanics. Such an isomorphism allows one to prove most of the basic features of quantum mechanics, like e.g. existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.Comment: Differing from the journal version, this version includes a table of contents and makes extensive use of boldface type to highlight the contents of the main theorems. It includes a self-contained introduction to the framework of general probabilistic theories and a discussion about the role of causality and local discriminabilit

    Ferroelectric precursor behavior in PbSc0.5Ta0.5O3 detected by field-induced resonant piezoelectric spectroscopy

    Get PDF
    A novel experimental technique, resonant piezoelectric spectroscopy (RPS), has been applied to investigate polar precursor effects in highly (65%) B-site ordered PbSc0.5Ta0.5O3 (PST), which undergoes a ferroelectric phase transition near 300 K. The cubic-rhombohedral transition is weakly first order, with a coexistence interval of ∼4 K, and is accompanied by a significant elastic anomaly over a wide temperature interval. Precursor polarity in the cubic phase was detected as elastic vibrations generated by local piezoelectric excitations in the frequency range 250–710 kHz. The RPS resonance frequencies follow exactly the frequencies of elastic resonances generated by conventional resonant ultrasound spectroscopy (RUS) but RPS signals disappear on heating beyond an onset temperature, Tonset, of 425 K. Differences between the RPS and RUS responses can be understood if the PST structure in the precursor regime between Tonset and the transition point, Ttrans=300 K, has locally polar symmetry even while it remains macroscopically cubic. It is proposed that this precursor behavior could involve the development of a tweed microstructure arising by coupling between strain and multiple order parameters, which can be understood from the perspective of Landau theory. As a function of temperature the transition is driven by the polar displacement P and the order parameter for cation ordering on the crystallographic B site Qod. Results in the literature show that, as a function of pressure, there is a separate instability driven by octahedral tilting for which the assigned order parameter is Q. The two mainly displacive order parameters, P and Q, are unfavorably coupled via a biquadratic term Q2P2, and complex tweedlike fluctuations in the precursor regime would be expected to combine aspects of all the order parameters. This would be different from the development of polar nanoregions, which are more usually evoked to explain relaxor ferroelectric behavior, such as occurs in PST with a lower degree of B-site order

    New mathematical framework for spherical gravitational collapse

    Get PDF
    A theorem, giving necessary and sufficient condition for naked singularity formation in spherically symmetric non static spacetimes under hypotheses of physical acceptability, is formulated and proved. The theorem relates existence of singular null geodesics to existence of regular curves which are super-solutions of the radial null geodesic equation, and allows us to treat all the known examples of naked singularities from a unified viewpoint. New examples are also found using this approach, and perspectives are discussed.Comment: 8 pages, LaTeX2

    Modulation of LISA free-fall orbits due to the Earth-Moon system

    Full text link
    We calculate the effect of the Earth-Moon (EM) system on the free-fall motion of LISA test masses. We show that the periodic gravitational pulling of the EM system induces a resonance with fundamental frequency 1 yr^-1 and a series of periodic perturbations with frequencies equal to integer harmonics of the synodic month (9.92 10^-7 Hz). We then evaluate the effects of these perturbations (up to the 6th harmonics) on the relative motions between each test masses couple, finding that they range between 3mm and 10pm for the 2nd and 6th harmonic, respectively. If we take the LISA sensitivity curve, as extrapolated down to 10^-6 Hz, we obtain that a few harmonics of the EM system can be detected in the Doppler data collected by the LISA space mission. This suggests that the EM system gravitational near field could provide an absolute calibration for the LISA sensitivity at very low frequencies.Comment: 15 pages, 5 figure

    The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers

    Full text link
    The AMY experiment aims to measure the microwave bremsstrahlung radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed using a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN National Laboratories. The goal of the AMY experiment is to measure in laboratory conditions the yield and the spectrum of the GHz emission in the frequency range between 1 and 20 GHz. The final purpose is to characterise the process to be used in a next generation detectors of ultra-high energy cosmic rays. A description of the experimental setup and the first results are presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High Energy Physics (July, 18-24, 2013) at Stockholm, Swede
    corecore