30,216 research outputs found
Towards the chemical tuning of entanglement in molecular nanomagnets
Antiferromagnetic spin rings represent prototypical realizations of highly
correlated, low-dimensional systems. Here we theoretically show how the
introduction of magnetic defects by controlled chemical substitutions results
in a strong spatial modulation of spin-pair entanglement within each ring.
Entanglement between local degrees of freedom (individual spins) and collective
ones (total ring spins) are shown to coexist in exchange-coupled ring dimers,
as can be deduced from general symmetry arguments. We verify the persistence of
these features at finite temperatures, and discuss them in terms of
experimentally accessible observables.Comment: 5 pages, 4 figure
Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach
Valence Bond Solids for Quantum Computation
Cluster states are entangled multipartite states which enable to do universal
quantum computation with local measurements only. We show that these states
have a very simple interpretation in terms of valence bond solids, which allows
to understand their entanglement properties in a transparent way. This allows
to bridge the gap between the differences of the measurement-based proposals
for quantum computing, and we will discuss several features and possible
extensions
Spin Relaxation in a Quantum Dot due to Nyquist Noise
We calculate electron and nuclear spin relaxation rates in a quantum dot due
to the combined action of Nyquist noise and electron-nuclei hyperfine or
spin-orbit interactions. The relaxation rate is linear in the resistance of the
gate circuit and, in the case of spin-orbit interaction, it depends essentially
on the orientations of both the static magnetic field and the fluctuating
electric field, as well as on the ratio between Rashba and Dresselhaus
interaction constants. We provide numerical estimates of the relaxation rate
for typical system parameters, compare our results with other, previously
discussed mechanisms, and show that the Nyquist mechanism can have an
appreciable effect for experimentally relevant systems.Comment: v2: New discussion of arbitrary gate setups (1 new figure), more
Comments on experiments; 6 pages, 4 figure
DMRG and periodic boundary conditions: a quantum information perspective
We introduce a picture to analyze the density matrix renormalization group
(DMRG) numerical method from a quantum information perspective. This leads us
to introduce some modifications for problems with periodic boundary conditions
in which the results are dramatically improved. The picture also explains some
features of the method in terms of entanglement and teleportation.Comment: 4 page
Exactness of the Original Grover Search Algorithm
It is well-known that when searching one out of four, the original Grover's
search algorithm is exact; that is, it succeeds with certainty. It is natural
to ask the inverse question: If we are not searching one out of four, is
Grover's algorithm definitely not exact? In this article we give a complete
answer to this question through some rationality results of trigonometric
functions.Comment: 8 pages, 2 figure
Renormalization algorithm for the calculation of spectra of interacting quantum systems
We present an algorithm for the calculation of eigenstates with definite
linear momentum in quantum lattices. Our method is related to the Density
Matrix Renormalization Group, and makes use of the distribution of multipartite
entanglement to build variational wave--functions with translational symmetry.
Its virtues are shown in the study of bilinear--biquadratic S=1 chains.Comment: Corrected version. We have added an appendix with an extended
explanation of the implementation of our algorith
Systems development methods and usability in Norway: An industrial perspective
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2007 Springer Berlin HeidelbergThis paper investigates the relationship between traditional systems development methodologies and usability, through a survey of 78 Norwegian IT companies. Building on previous research we proposed two hypotheses; (1) that software companies will generally pay lip service to usability, but do not prioritize it in industrial projects, and (2) that systems development methods and usability are perceived as not being integrated. We find support for both hypotheses. Thus, the use of systems development methods is fairly stable, confirming earlier research. Most companies do not use a formal method, and of those who do, the majority use their own method. Generally, the use of methods is rather pragmatic: Companies that do not use formal methods report that they use elements from such methods. Further, companies that use their own method import elements from standardised methods into their own
Analysis of complete positivity conditions for quantum qutrit channels
We present an analysis of complete positivity (CP) constraints on qutrit
quantum channels that have a form of affine transformations of generalized
Bloch vector. For diagonal (damping) channels we derive conditions analogous to
the ones that in qubit case produce tetrahedron structure in the channel
parameter space.Comment: 12 pages, 8 figures (.eps), minor changes in the text and formula
Renormalization group transformations on quantum states
We construct a general renormalization group transformation on quantum
states, independent of any Hamiltonian dynamics of the system. We illustrate
this procedure for translational invariant matrix product states in one
dimension and show that product, GHZ, W and domain wall states are special
cases of an emerging classification of the fixed points of this
coarse--graining transformation.Comment: 5 pages, 2 figur
- …
