105 research outputs found
Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials
There is an urgent need to treat individuals with high blood pressure (BP) with effective dietary strategies. Previous studies suggest a small, but significant decrease in BP after lactotripeptides (LTP) ingestion, although the data are inconsistent. The study aim was to perform a comprehensive meta-analysis of data from all relevant randomised controlled trials (RCT). Medline, Cochrane library, EMBASE and Web of Science were searched until May 2014. Eligibility criteria were RCT that examined the effects of LTP on BP in adults, with systolic BP (SBP) and diastolic BP (DBP) as outcome measures. Thirty RCT met the inclusion criteria, which resulted in 33 sets of data. The pooled treatment effect for SBP was −2.95 mmHg (95% CI: −4.17, −1.73; p < 0.001), and for DBP was −1.51 mmHg (95% CI: −2.21, −0.80; p < 0.001). Sub-group analyses revealed that reduction of BP in Japanese studies was significantly greater, compared with European studies (p = 0.002 for SBP and p < 0.001 for DBP). The 24-h ambulatory BP (AMBP) response to LTP supplementation was statistically non-significant (p = 0.101 for SBP and p = 0.166 for DBP). Both publication bias and “small-study effect” were identified, which shifted the treatment effect towards less significant SBP and non-significant DBP reduction after LTP consumption. LTP may be effective in BP reduction, especially in Japanese individuals; however sub-group, meta-regression analyses and statistically significant publication biases suggest inconsistencies
Recommended from our members
Can milk proteins be a useful tool in the management of cardiometabolic health? An updated review of human intervention trials
The prevalence of cardiometabolic diseases is a significant public health burden worldwide. Emerging evidence supports the inverse association between greater dairy consumption and reduced risk of cardiometabolic diseases. Dairy proteins may have in important role in the favourable impact of dairy on human health such as blood pressure (BP) control, blood lipid and glucose control. The purpose of this review is to update and critically evaluate the evidence on the impacts of casein and whey protein in relation to metabolic function. Evidence from acute clinical studies assessing postprandial responses to milk protein ingestion suggests benefits on vascular function independent of BP, as well as improvement in glycaemic homeostasis. Chronic interventions have been less conclusive, with some showing benefits and others indicating a lack of improvement in vascular function. During chronic consumption BP appears to be lowered and both dyslipidaemia and hyperglacaemia seems to be controlled. Limited number of trials investigated the effects of dairy proteins on oxidative stress and inflammation. The beneficial changes in cardiometabolic homeostasis are likely mediated through improvements in insulin resistance, however to gain more detailed understanding on the underlying mechanism of milk proteins warrants further research. The incorporation of meals enriched with dairy protein in the habitual diet may result in the beneficial effects on cardiometabolic health. Nevertheless, future well-designed, controlled studies are needed to investigate the relative effects of both casein and whey protein on BP, vascular function, glucose homeostasis and inflammation
Recommended from our members
Effect of selected plant species within biodiverse pasture on in vitro fatty acid biohydrogenation and tissue fatty acid composition of lamb
The effect of botanical diversity on supply of polyunsaturated fatty acids (PUFA) to ruminants in vitro, and the fatty acid (FA) composition of muscle in lambs was investigated. Six plant species, commonly grown as part of UK herbal ley mixtures (Trifolium pratense, Lotus corniculatus, Achillea millefolium, Centaurea nigra, Plantago lanceolata and Prunella vulgaris), were assessed for FA profile, and in vitro biohydrogenation of constituent PUFA, to estimate intestinal supply of PUFA available for absorption by ruminants. Modelling the in vitro data suggested that L. Corniculatus and P. Vulgaris had the greatest potential to increase 18:3 n-3 supply to ruminants, having the highest amounts escaping in vitro biohydrogenation . Biodiverse pastures were established using the six selected species, under-sown in a perennial ryegrass-based sward. Lambs were grazed (~50 days) on biodiverse or control pastures and the effects on the FA composition of m. longissimus thoracis (lean and subcutaneous fat) and m. semimembranosus (lean) were determined. Biodiverse pasture increased 18:2 n-6 and 18:3 n-3 contents of m. semimembranosus (+14.8 and +7.2 mg/100g tissue respectively) and the subcutaneous fat of m. l. thoracis (+158 and +166 mg/100g tissue respectively) relative to feeding a perennial ryegrass pasture. However, there was no effect on total concentrations of saturated FA in the tissues studied. It was concluded that enhancing biodiversity had a positive impact on muscle FA profile reflected by increased levels of total PUFA
Recommended from our members
Fat and fatty acid composition of cooked meat from UK retail chickens labelled as from organic and non-organic production systems
This study compared fat and fatty acids in cooked retail chicken meat from conventional and organic systems. Fat contents were 1.7, 5.2, 7.1 and 12.9 g/100 g cooked weight in skinless breast, breast with skin, skinless leg and leg with skin respectively, with organic meat containing less fat overall (P < 0.01). Meat was rich in cis-monounsaturated fatty acids, although organic meat contained less than did conventional meat (1850 vs. 2538 mg/100 g; P < 0.001). Organic meat was also lower (P < 0.001) in 18:3 n−3 (115 vs. 180 mg/100 g) and, whilst it contained more (P < 0.001) docosahexaenoic acid (30.9 vs. 13.7 mg/100 g), this was due to the large effect of one supermarket. This system by supermarket interaction suggests that poultry meat labelled as organic is not a guarantee of higher long chain n−3 fatty acids. Overall there were few major differences in fatty acid contents/profiles between organic and conventional meat that were consistent across all supermarkets
Dietary patterns in relation to cardiovascular disease incidence and risk markers in a middle-aged British male population: data from the Caerphilly prospective study
Dietary behaviour is an important modifiable factor in cardiovascular disease (CVD) prevention. The study aimed to identify dietary patterns (DPs) and explore their association with CVD incidence and risk markers. A follow-up of 1838 middle-aged men, aged 47-67 years recruited into the Caerphilly Prospective Cohort Study at phase 2 (1984-1988) was undertaken. Principal component analysis identified three DPs at baseline, which explained 24.8% of the total variance of food intake. DP1, characterised by higher intakes of white bread, butter, lard, chips and sugar-sweetened beverages and lower intake of wholegrain bread, was associated with higher CVD (HR 1.35: 95% CI: 1.10, 1.67) and stroke (HR 1.77; 95% CI: 1.18, 2.63) incidence. DP3, characterised by higher intakes of sweet puddings and biscuits, wholegrain breakfast cereals and dairy (excluding cheese and butter) and lower alcohol intake, was associated with lower CVD (HR 0.76; 95% CI: 0.62, 0.93), coronary heart disease (HR: 0.68; 95% CI: 0.52, 0.90) and stroke (HR: 0.68; 95% CI: 0.47, 0.99) incidence and a beneficial CVD profile at baseline, while DP1 with an unfavourable profile, showed no clear associations after 12 years follow-up. Dietary pattern 2 (DP2), characterised by higher intake of pulses, fish, poultry, processed/red meat, rice, pasta and vegetables, was not associated with the aforementioned outcomes. These data may provide insight for development of public health initiatives focussing on feasible changes in dietary habits
Recommended from our members
Effect of milk type and processing on iodine concentration of organic and conventional winter milk at retail: implications for nutrition
Milk is the largest source of iodine in UK diets and an earlier study showed that organic summer milk had significantly lower iodine concentration than conventional milk. There are no comparable studies with winter milk or the effect of milk fat class or heat processing method. Two retail studies with winter milk are reported. Study 1 showed no effect of fat class but organic milk was 32.2% lower in iodine than conventional milk (404 vs. 595 μg/L; P < 0.001). Study 2 found no difference between conventional and Channel Island milk but organic milk contained 35.5% less iodine than conventional milk (474 vs. 306 μg/L; P < 0.001). UHT and branded organic milk also had lower iodine concentrations than conventional milk (331 μg/L; P < 0.001 and 268 μg/L: P < 0.0001 respectively). The results indicate that replacement of conventional milk by organic or UHT milk will increase the risk of sub-optimal iodine status especially for pregnant/lactating women
Recommended from our members
Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows
It is known that supplementing dairy cow diets with full-fat oilseeds can be used as a strategy to mitigate methane emissions, through their action on rumen fermentation. However, direct comparisons of the effect of different oil sources are very few, as are studies implementing supplementation levels that reflect what is commonly fed on commercial farms. The objective was to investigate the effect of feeding different forms of supplemental plant oils on both methane emissions and milk fatty acid (FA) profile. Four multiparous, Holstein-Friesian cows in mid-lactation were randomly allocated to
one of four treatment diets in a 4 x 4 Latin square design with 28-day periods. Diets were fed as a TMR with a 50:50 forage:concentrate ratio (dry matter, DM basis) with the forage consisting of 75:25 maize silage:grass silage (DM). Dietary treatments were a control diet containing no supplemental fat, and three treatment diets containing extruded linseed (EL), calcium salts of palm and linseed oil (CPLO) or milled rapeseed (MR) formulated to provide each cow with an estimated 500 g additional oil/d (22 g oil/kg diet DM). Dry matter intake (DMI), milk yield, milk composition and methane production were measured at the end of each experimental period when cows were housed in respiration chambers for 4 days. There was no effect of treatment diet on DMI or milk protein or lactose concentration, but oilseed-based supplements increased milk yield compared with the control diet and milk fat concentration relative to control was reduced by 4 g/kg by supplemental EL. Feeding CPLO reduced methane production, and both linseed-based supplements decreased methane yield (by 1.8 L/kg DMI) and intensity (by 2.7 L/kg milk yield) compared with the control diet, but feeding MR had no effect on methane emission. All the fat supplements decreased milk total saturated fatty acid (SFA) concentration compared with the control, and SFA were replaced with mainly cis-9 18:1 but also trans FA (and in the case of EL and CPLO there were increases in polyunsaturated FA concentration). Supplementing dairy cow diets with these oilseed-based preparations affected milk FA profile and increased milk yield. However, only the linseed-based supplements reduced methane production, yield, or intensity, whilst feeding MR had no effect
Recommended from our members
25(OH)D3-enriched or fortified foods are more efficient at tackling inadequate vitamin D status than vitamin D3
The ability to synthesise sufficient vitamin D through sunlight in human subjects can be
limited. Thus, diet has become an important contributor to vitamin D intake and status;
however, there are only a few foods (e.g. egg yolk, oily fish) naturally rich in vitamin
D. Therefore, vitamin D-enriched foods via supplementing the animals’ diet with vitamin
D or vitamin D fortification of foods have been proposed as strategies to increase
vitamin D intake. Evidence that cholecalciferol (vitamin D3) and calcifediol (25(OH)D3)
content of eggs, fish and milk increased in response to vitamin D3 supplementation of
hens, fish or cows’ diets was identified when vitamin D-enrichment studies were reviewed.
However, evidence from supplementation studies with hens showed only dietary 25(OH)D3,
not vitamin D3 supplementation, resulted in a pronounced increase of 25(OH)D3 in the
eggs. Furthermore, evidence from randomised controlled trials indicated that a 25(OH)D3
oral supplement could be absorbed faster and more efficiently raise serum 25(OH)D
concentration compared with vitamin D3 supplementation. Moreover, evidence showed
the relative effectiveness of increasing vitamin D status using 25(OH)D3 varied between
3·13 and 7·14 times that of vitamin D3, probably due to the different characteristics of
the investigated subjects or study design. Therefore, vitamin D-enrichment or fortified
foods using 25(OH)D3 would appear to have advantages over vitamin D3. Further wellcontrolled
studies are needed to assess the effects of 25(OH)D3 enriched or fortified foods
in the general population and clinical patients
Short-communication: a comparison of the in vitro angiotensin-1-converting enzyme inhibitory capacity of dairy and plant protein supplements
The consumption of supplements based on dairy or plant proteins may be associated with bioactive potential, including angiotensin-1-converting enzyme inhibitory (ACE-1i) activity, which is linked with blood pressure reduction in vivo. To gain insight into this proposed mechanism, the ACE-1i potential of protein-based supplements, including a selection of dairy (n = 10) and plant (n = 5) proteins were in vitro digested. The total digest was filtered and permeate and retentate were obtained. ACE-1i activity was measured as the ability of proteins (pre-digestion, 'gastric', permeate, and retentate) to decrease the hydrolysis of furanacroloyl-Phe-Glu-Glu (FAPGG) substrate for the ACE-1 enzyme. Permeate and retentate of dairy proteins exerted a significantly higher ACE-1i activity (mean of 10 proteins: 27.05 ± 0.2% and 20.7 ± 0.2%, respectively) compared with pre-digestion dairy proteins (16.7 ± 0.3%). Plant protein exhibited high ACE-1i in 'gastric' and retentate fractions (mean of five proteins: 54.9 ± 0.6% and 35.7 ± 0.6%, respectively). The comparison of the in vitro ACE-1i activity of dairy and plant proteins could provide valuable knowledge regarding their specific bioactivities, which could inform their use in the formulation of specific functional supplements that would require testing for blood pressure control in human randomly-controlled studies
Recommended from our members
An update to the fatty acid profiles of bovine retail milk in the United Kingdom: implications for nutrition in different age and gender groups
This study investigated the effect of UK dairy production system, month, and their interaction, on retail milk fatty acid (FA) profile throughout the year. Milk samples (n=120) from four conventional (CON), four organic (ORG) and two free-range (FR) brands were collected monthly. ORG milk had more nutritionally-desirable polyunsaturated FA, including rumenic acid and the omega-3 PUFA α-linolenic, eicosapentaenoic and docosapentaenoic acids, and less of the nutritionally-undesirable palmitic acid. Milk FA profile was similar between FR and CON, but FR milk had less SFA and/or palmitic acid, and/or greater α-linolenic and rumenic acids in certain months within the peak-grazing season. According to the measured milk FA profiles and UK milk fat intakes, milk and dairy products contribute around one-third of the maximum recommended saturated FA intake. A small increased intake of beneficial PUFA may be expected by consuming ORG milk but human health implications from such differences are unknown
- …
