955 research outputs found
Polarized Proton Beams from Laser-induced Plasmas
We report on the concept of an innovative source to produce polarized
proton/deuteron beams of a kinetic energy up to several GeV from a laser-driven
plasma accelerator. Spin effects have been implemented into the PIC simulation
code VLPL to make theoretical predictions about the behavior of proton spins in
laser-induced plasmas. Simulations of spin-polarized targets show that the
polarization is conserved during the acceleration process. For the experimental
realization, a polarized HCl gas-jet target is under construction using the
fundamental wavelength of a Nd:YAG laser system to align the HCl bonds and
simultaneously circular polarized light of the fifth harmonic to
photo-dissociate, yielding nuclear polarized H atoms. Subsequently, their
degree of polarization is measured with a Lamb-shift polarimeter. The final
experiments, aiming at the first observation of a polarized particle beam from
laser-generated plasmas, will be carried out at the 10 PW laser system SULF at
SIOM/Shanghai.Comment: 7 pages, 7 figure
Microscopic nonequilibrium theory of double-barrier Josephson junctions
We study nonequilibrium charge transport in a double-barrier Josephson
junction, including nonstationary phenomena, using the time-dependent
quasiclassical Keldysh Green's function formalism. We supplement the kinetic
equations by appropriate time-dependent boundary conditions and solve the
time-dependent problem in a number of regimes. From the solutions,
current-voltage characteristics are derived. It is understood why the
quasiparticle current can show excess current as well as deficit current and
how the subgap conductance behaves as function of junction parameters. A
time-dependent nonequilibrium contribution to the distribution function is
found to cause a non-zero averaged supercurrent even in the presence of an
applied voltage. Energy relaxation due to inelastic scattering in the
interlayer has a prominent role in determining the transport properties of
double-barrier junctions. Actual inelastic scattering parameters are derived
from experiments. It is shown as an application of the microscopic model, how
the nature of the intrinsic shunt in double-barrier junctions can be explained
in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.
Diseño y Evaluación de un programa informático para la educación musical de maestros no especialistas. El caso de EMOLAB.
Este trabajo expone el diseño, desarrollo y evaluación de un software como apoyo docente en una materia de formación musical básica para futuros maestros generalistas. La evaluación del programa fue realizada por estudiantes de primer año del Grado de Maestro en Educación Primaria. Cumplimentaron un cuestionario que recogió sus opiniones (versatilidad, eficacia, facilidad de uso, calidad del entorno gráfico, adecuación, interés, facilitación del aprendizaje, feedback, funcionalidad) y percepciones sobre aspectos más generales (control, orientación, afectividad, consulta, verificación, seguimiento). Los resultados sugieren que el alumnado percibe EMOLab como herramienta de gran ayuda en el desarrollo de sus habilidades musicales
Osmanli Araştırmaları I [ The Journal of Ottoman Studies I] Editorial Board: Halil Inalcik - Nejat Göyünç-Heath W. Lowry, Istanbul 1980, VIII+287 pp
Learning on a Budget via Teacher Imitation
Deep Reinforcement Learning (RL) techniques can benefit greatly from leveraging prior experience, which can be either self-generated or acquired from other entities. Action advising is a framework that provides a flexible way to transfer such knowledge in the form of actions between teacher-student peers. However, due to the realistic concerns, the number of these interactions is limited with a budget; therefore, it is crucial to perform these in the most appropriate moments. There have been several promising studies recently that address this problem setting especially from the student's perspective. Despite their success, they have some shortcomings when it comes to the practical applicability and integrity as an overall solution to the learning from advice challenge. In this paper, we extend the idea of advice reusing via teacher imitation to construct a unified approach that addresses both advice collection and advice utilisation problems. We also propose a method to automatically tune the relevant hyperparameters of these components on-the-fly to make it able to adapt to any task with minimal human intervention. The experiments we performed in 5 different Atari games verify that our algorithm either surpasses or performs on-par with its top competitors while being far simpler to be employed. Furthermore, its individual components are also found to be providing significant advantages alone
A new time-frequency analysis technique for neuroelectric signals
Cataloged from PDF version of article.In the presence of external stimuli, the functioning brain emits neuroelectrical
signals which can be recorded as the Event Related Potential (ERP) signals.
To understand the brain cognitive functions, ERP signals have been the subject
matter of many applications in the field of cognitive psychophysiology.
Due to the non–stationary nature of the ERP signals, commonly used time
or frequency analysis techniques fail to capture the time–frequency domain
localized nature of the ERP signal components. In this study, the newly developed
Time–Frequency Component Analyzer (TFCA) approach is adapted
to the ERP signal analysis. The results obtained on the actual ERP signals
show that the TFCA does not have a precedent in resolution and extraction
of uncontaminated individual ERP signal components. Furthermore, unlike
the existing ERP analysis techniques, the TFCA based analysis technique can
reliably measures the subject dependent variations in the ERP signals, which
iiiopens up new possibilities in the clinical studies. Thus, TFCA serves as an
ideal tool for studying the intricate machinery of the human brain.Tüfekçi, D. İlhanM.S
A closed loop brain-machine interface for epilepsy control using dorsal column electrical stimulation
Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.We are grateful for the assistance from Jim Meloy for the design and production of the multielectrode arrays as well as setup development and maintenance, Laura Oliveira, Terry Jones, and Susan Halkiotis for administrative assistance and preparation of the manuscript. This work was funded by a grant from The Hartwell Foundation.info:eu-repo/semantics/publishedVersio
What is a smart device? - a conceptualisation within the paradigm of the internet of things
The Internet of Things (IoT) is an interconnected network of objects which range from simple sensors to smartphones and tablets; it is a relatively novel paradigm that has been rapidly gaining ground in the scenario of modern wireless telecommunications with an expected growth of 25 to 50 billion of connected devices for 2020 Due to the recent rise of this paradigm, authors across the literature use inconsistent terms to address the devices present in the IoT, such as mobile device, smart device, mobile technologies or mobile smart device. Based on the existing literature, this paper chooses the term smart device as a starting point towards the development of an appropriate definition for the devices present in the IoT. This investigation aims at exploring the concept and main features of smart devices as well as their role in the IoT. This paper follows a systematic approach for reviewing compendium of literature to explore the current research in this field. It has been identified smart devices as the primary objects interconnected in the network of IoT, having an essential role in this paradigm. The developed concept for defining smart device is based on three main features, namely context-awareness, autonomy and device connectivity. Other features such as mobility and userinteraction were highly mentioned in the literature, but were not considered because of the nature of the IoT as a network mainly oriented to device-to-device connectivity whether they are mobile or not and whether they interact with people or not. What emerges from this paper is a concept which can be used to homogenise the terminology used on further research in the Field of digitalisation and smart technologies
Investigation of mitophagy biomarkers in corneal epithelium of keratoconus patients
Purpose: The pathological mechanisms of keratoconus (KC) have not been elucidated yet. Mitophagy is an important mechanism that eliminates damaged mitochondria under oxidative stress, and it could be one of the leading pathological causes of KC. This study aimed to find out the role of mitophagy in the keratoconic corneal epithelium.
Methods: The corneal epithelia were collected from the 103 progressive KC patients and the 46 control subjects. The real-time quantitative PCR was performed for PTEN-putative kinase-1 (PINK1), PARKIN, p62, and BNIP3 gene expressions in 31 KC and 9 control subjects. Western blot analyses were performed to investigate the protein expressions of PINK1, PARKIN, LC3B, ATG5, and BECLIN in the remaining 109 corneal epithelium samples from 72 patients and 37 control subjects.
Results: mRNA and protein expressions of PINK1 decreased significantly in the corneal epithelium of KC patients compared to the control subjects. No significant change was found in mRNA levels of PARKIN, p62, and BNIP3 in KC patients. The protein expression of PARKIN, LC3B, ATG5, and Beclin did not significantly differ between KC patients and control subjects. Gene expression levels of mitophagy biomarkers were not affected by the KC grade.
Conclusions: PINK1/PARKIN-dependent mitophagy is affected in the keratoconic corneal epithelium. We found significant decreases in both mRNA and protein expressions of PINK1 in the keratoconic corneal epithelium. However, we did not observe any other significant change in mitophagy markers. Mitochondrial stress-related mitophagy pathways could be interrupted by the decreased levels of PINK1 in the keratoconic corneal epithelium, but solely PINK1 dysregulation is not likely to induce KC pathogenesis
- …
