1,016 research outputs found
Invariant Submanifolds of Generalized Sasakian-Space-Forms
The object of this paper is to study the invariant submanifolds of
generalized Sasakian-space-forms. Here, we obtain some equivalent conditions
for an invariant submanifold of a generalized Sasakian-space-forms to be
totally geodesic.Comment: 11 page
Cross-Sender Bit-Mixing Coding
Scheduling to avoid packet collisions is a long-standing challenge in
networking, and has become even trickier in wireless networks with multiple
senders and multiple receivers. In fact, researchers have proved that even {\em
perfect} scheduling can only achieve . Here
is the number of nodes in the network, and is the {\em medium
utilization rate}. Ideally, one would hope to achieve ,
while avoiding all the complexities in scheduling. To this end, this paper
proposes {\em cross-sender bit-mixing coding} ({\em BMC}), which does not rely
on scheduling. Instead, users transmit simultaneously on suitably-chosen slots,
and the amount of overlap in different user's slots is controlled via coding.
We prove that in all possible network topologies, using BMC enables us to
achieve . We also prove that the space and time
complexities of BMC encoding/decoding are all low-order polynomials.Comment: Published in the International Conference on Information Processing
in Sensor Networks (IPSN), 201
Large Extra Dimension effects through Light-by-Light Scattering at the CERN LHC
Observing light-by-light scattering at the Large Hadron Collider (LHC) has
received quite some attention and it is believed to be a clean and sensitive
channel to possible new physics. In this paper, we study the diphoton
production at the LHC via the process through graviton exchange in the Large Extra
Dimension (LED) model. Typically, when we do the background analysis, we also
study the Double Pomeron Exchange (DPE) of production. We
compare its production in the quark-quark collision mode to the gluon-gluon
collision mode and find that contributions from the gluon-gluon collision mode
are comparable to the quark-quark one. Our result shows, for extra dimension
, with an integrated luminosity at the
14 TeV LHC, that diphoton production through graviton exchange can probe the
LED effects up to the scale for the forward
detector acceptance , respectively, where
, and .Comment: 25 pages. 7 figs. Change some grammatical error
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells
In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al
Mode-division-multiplexed 3x112-Gb/s DP-QPSK transmission over 80-km few-mode fiber with inline MM-EDFA and blind DSP
We show transmission of a 3x112-Gb/s DP-QPSK mode-multiplexed signal up to 80km, without and with multi-mode EDFA, using blind 6x6 MIMO digital signal processing. We show that the OSNR-penalty induced by mode-mixing in the multi-mode EDFA is negligible
First results from the Cluster wideband plasma wave investigation
International audienceIn this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1) whistlers, (2) chorus, and (3) auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The frequency-time structure of this radiation usually shows a very good one-to-one correspondence between the various spacecraft. By using the microsecond timing available at the NASA Deep Space Net-work, very-long-baseline radio astronomy techniques have been used to determine the source of the auroral kilometric radiation. One event analyzed using this technique shows a very good correspondence between the inferred source location, which is assumed to be at the electron cyclotron frequency, and a bright spot in the aurora along the magnetic field line through the source
Strongly magnetized pulsars: explosive events and evolution
Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., 1968), it had been suggested
that neutron stars might be endowed with very strong magnetic fields of
-G (Hoyle et al., 1964; Pacini, 1967). It is because of their
magnetic fields that these otherwise small ed inert, cooling dead stars emit
radio pulses and shine in various part of the electromagnetic spectrum. But the
presence of a strong magnetic field has more subtle and sometimes dramatic
consequences: In the last decades of observations indeed, evidence mounted that
it is likely the magnetic field that makes of an isolated neutron star what it
is among the different observational manifestations in which they come. The
contribution of the magnetic field to the energy budget of the neutron star can
be comparable or even exceed the available kinetic energy. The most magnetised
neutron stars in particular, the magnetars, exhibit an amazing assortment of
explosive events, underlining the importance of their magnetic field in their
lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme
for the different observational manifestations in which they appear. We focus
on the role of their magnetic field as an energy source behind their persistent
emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of
"NewCompStar" European COST Action MP1304, 43 pages, 8 figure
- …
