567 research outputs found
Monte Carlo simulations of fluid vesicles with in plane orientational ordering
We present a method for simulating fluid vesicles with in-plane orientational
ordering. The method involves computation of local curvature tensor and
parallel transport of the orientational field on a randomly triangulated
surface. It is shown that the model reproduces the known equilibrium
conformation of fluid membranes and work well for a large range of bending
rigidities. Introduction of nematic ordering leads to stiffening of the
membrane. Nematic ordering can also result in anisotropic rigidity on the
surface leading to formation of membrane tubes.Comment: 11 Pages, 12 Figures, To appear in Phys. Rev.
Zone Determinant Expansions for Nuclear Lattice Simulations
We introduce a new approximation to nucleon matrix determinants that is
physically motivated by chiral effective theory. The method involves breaking
the lattice into spatial zones and expanding the determinant in powers of the
boundary hopping parameter.Comment: 20 pages, 6 figures, revtex4 (version to appear in PRC
BDDC and FETI-DP under Minimalist Assumptions
The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary
simple abstract form. It is shown that their properties can be obtained from
only on a very small set of algebraic assumptions. The presentation is purely
algebraic and it does not use any particular definition of method components,
such as substructures and coarse degrees of freedom. It is then shown that
P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC
preconditioned operators are of the same algebraic form, and the standard
condition number bound carries over to arbitrary abstract operators of this
form. The equality of eigenvalues of BDDC and FETI-DP also holds in the
minimalist abstract setting. The abstract framework is explained on a standard
substructuring example.Comment: 11 pages, 1 figure, also available at
http://www-math.cudenver.edu/ccm/reports
Exact Solutions for Domain Walls in Coupled Complex Ginzburg - Landau Equations
The complex Ginzburg Landau equation (CGLE) is a ubiquitous model for the
evolution of slowly varying wave packets in nonlinear dissipative media. A
front (shock) is a transient layer between a plane-wave state and a zero
background. We report exact solutions for domain walls, i.e., pairs of fronts
with opposite polarities, in a system of two coupled CGLEs, which describe
transient layers between semi-infinite domains occupied by each component in
the absence of the other one. For this purpose, a modified Hirota bilinear
operator, first proposed by Bekki and Nozaki, is employed. A novel
factorization procedure is applied to reduce the intermediate calculations
considerably. The ensuing system of equations for the amplitudes and
frequencies is solved by means of computer-assisted algebra. Exact solutions
for mutually-locked front pairs of opposite polarities, with one or several
free parameters, are thus generated. The signs of the cubic gain/loss, linear
amplification/attenuation, and velocity of the coupled-front complex can be
adjusted in a variety of configurations. Numerical simulations are performed to
study the stability properties of such fronts.Comment: Journal of the Physical Society of Japan, in pres
Instances and connectors : issues for a second generation process language
This work is supported by UK EPSRC grants GR/L34433 and GR/L32699Over the past decade a variety of process languages have been defined, used and evaluated. It is now possible to consider second generation languages based on this experience. Rather than develop a second generation wish list this position paper explores two issues: instances and connectors. Instances relate to the relationship between a process model as a description and the, possibly multiple, enacting instances which are created from it. Connectors refers to the issue of concurrency control and achieving a higher level of abstraction in how parts of a model interact. We believe that these issues are key to developing systems which can effectively support business processes, and that they have not received sufficient attention within the process modelling community. Through exploring these issues we also illustrate our approach to designing a second generation process language.Postprin
Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment
Individual Eigenvalue Distributions for the Wilson Dirac Operator
We derive the distributions of individual eigenvalues for the Hermitian
Wilson Dirac Operator D5 as well as for real eigenvalues of the Wilson Dirac
Operator DW. The framework we provide is valid in the epsilon regime of chiral
perturbation theory for any number of flavours Nf and for non-zero low energy
constants W6, W7, W8. It is given as a perturbative expansion in terms of the
k-point spectral density correlation functions and integrals thereof, which in
some cases reduces to a Fredholm Pfaffian. For the real eigenvalues of DW at
fixed chirality nu this expansion truncates after at most nu terms for small
lattice spacing "a". Explicit examples for the distribution of the first and
second eigenvalue are given in the microscopic domain as a truncated expansion
of the Fredholm Pfaffian for quenched D5, where all k-point densities are
explicitly known from random matrix theory. For the real eigenvalues of
quenched DW at small "a" we illustrate our method by the finite expansion of
the corresponding Fredholm determinant of size nu.Comment: 20 pages, 5 figures; v2: typos corrected, refs added and discussion
of W6 and W7 extende
- …
