589 research outputs found

    Evolution of white dwarf stars with high-metallicity progenitors: the role of 22Ne diffusion

    Get PDF
    Motivated by the strong discrepancy between the main sequence turn-off age and the white dwarf cooling age in the metal-rich open cluster NGC 6791, we compute a grid of white dwarf evolutionary sequences that incorporates for the first time the energy released by the processes of 22Ne sedimentation and of carbon/oxygen phase separation upon crystallization. The grid covers the mass range from 0.52 to 1.0 Msun, and it is appropriate for the study of white dwarfs in metal-rich clusters. The evolutionary calculations are based on a detailed and self-consistent treatment of the energy released from these two processes, as well as on the employment of realistic carbon/oxygen profiles, of relevance for an accurate evaluation of the energy released by carbon/oxygen phase separation. We find that 22Ne sedimentation strongly delays the cooling rate of white dwarfs stemming from progenitors with high metallicities at moderate luminosities, whilst carbon/oxygen phase separation adds considerable delays at low luminosities. Cooling times are sensitive to possible uncertainties in the actual value of the diffusion coefficient of 22Ne. Changing the diffusion coefficient by a factor of 2, leads to maximum age differences of approx. 8-20% depending on the stellar mass. We find that the magnitude of the delays resulting from chemical changes in the core is consistent with the slow down in the white dwarf cooling rate that is required to solve the age discrepancy in NGC 6791.Comment: 10 pages, 6 figures, to be published in The Astrophysical Journa

    Gravitational settling of 22Ne and white dwarf evolution

    Get PDF
    We study the effects of the sedimentation of the trace element 22Ne in the cooling of white dwarfs. In contrast with previous studies, which adopted a simplified treatment of the effects of 22Ne sedimentation, this is done self-consistently for the first time, using an up-to-date stellar evolutionary code in which the diffusion equation is coupled with the full set of equations of stellar evolution. Due the large neutron excess of 22Ne, this isotope rapidly sediments in the interior of the white dwarf. Although we explore a wide range of parameters, we find that using the most reasonable assumptions concerning the diffusion coefficient and the physical state of the white dwarf interior the delay introduced by the ensuing chemical differentation is minor for a typical 0.6 Msun white dwarf. For more massive white dwarfs, say M_Wd about 1.0 Msun, the delay turns out to be considerably larger. These results are in qualitatively good accord with those obtained in previous studies, but we find that the magnitude of the delay introduced by 22Ne sedimentation was underestimated by a factor of about 2. We also perform a preliminary study of the impact of 22Ne sedimentation on the white dwarf luminosity function. Finally, we hypothesize as well on the possibility of detecting the sedimentation of 22Ne using pulsating white dwarfs in the appropriate effective temperature range with accurately determined rates of change of the observed periods.Comment: To apper in The Astrophysical Journa

    The Possible White Dwarf-Neutron Star Connection

    Get PDF
    The current status of the problem of whether neutron stars can form, in close binary systems, by accretion-induced collapse (AIC) of white dwarfs is examined. We find that, in principle, both initially cold C+O white dwarfs in the high-mass tail of their mass distribution in binaries and O+Ne+Mg white dwarfs can produce neutron stars. Which fractions of neutron stars in different types of binaries (or descendants from binaries) might originate from this process remains uncertain.Comment: 6 pages. To appear in "White Dwarfs", ed. J. Isern, M. Hernanz, and E. Garcia-Berro (Dordrecht: Kluwer

    The rate of cooling of the pulsating white dwarf star G117-B15A: a new asteroseismological inference of the axion mass

    Get PDF
    We employ a state-of-the-art asteroseismological model of G117-B15A, the archetype of the H-rich atmosphere (DA) white dwarf pulsators (also known as DAV or ZZ Ceti variables), and use the most recently measured value of the rate of period change for the dominant mode of this pulsating star to derive a new constraint on the mass of axion, the still conjectural non-barionic particle considered as candidate for dark matter of the Universe. Assuming that G117-B15A is truly represented by our asteroseismological model, and in particular, that the period of the dominant mode is associated to a pulsation g-mode trapped in the H envelope, we find strong indications of the existence of extra cooling in this star, compatible with emission of axions of mass m_a \cos^2 \beta = 17.4^{+2.3}_{-2.7} meV.Comment: 9 pages, 5 figures and 3 tables. Accepted for publication in MNRA

    The ages of very cool hydrogen-rich white dwarfs

    Get PDF
    The evolution of white dwarfs is essentially a cooling process that depends primarily on the energy stored in their degenerate cores and on the transparency of their envelopes. In this paper we compute accurate cooling sequences for carbon-oxygen white dwarfs with hydrogen dominated atmospheres for the full range of masses of interest. For this purpose we use the most accurate available physical inputs for both the equation of state and opacities of the envelope and for the thermodynamic quantities of the degenerate core. We also investigate the role of the latent heat in the computed cooling sequences. We present separately cooling sequences in which the effects of phase separation of the carbon-oxygen binary mixture upon crystallization have been neglected, and the delay introduced in the cooling times when this mechanism is properly taken into account, in order to compare our results with other published cooling sequences which do not include a treatment of this phenomenon. We find that the cooling ages of very cool white dwarfs with pure hydrogen atmospheres have been systematically underestimated by roughly 1.5 Gyr at log(L/Lo)=-4.5 for an otherwise typical 0.6 Mo white dwarf, when phase separation is neglected. If phase separation of the binary mixture is included then the cooling ages are further increased by roughly 10%. Cooling tracks and cooling isochrones in several color-magnitude diagrams are presented as well.Comment: 8 Pages; ApJ, accepted for publicatio

    Experiences in the development of electronic care plans for the management of comorbidities

    Get PDF
    Recent studies have shown that care plans with comprehen- sive home interventions can be effective in the management of chronic patients. Evidence also exists about the importance of tailoring these care plans to patients, by integrating comorbidities. In this context, the de- velopment, implementation, outcome analysis, and reengineering of care plans adapted to particular patient groups earn relevance. We are con- cerned with the development and reengineering of electronic care plans dealing with comorbidities. Our hypothesis is that a library of reusable care plan components can facilitate these tasks. To confirm this hypoth- esis we have carried out an experiment consisting in developing a library of care plan components for the management of patients with COPD3 or CHF4, and next building a care plan for stable COPD&CHF patients by (re)using these components. In this paper we report on this experimen

    Gravitational Settling of ^{22}Ne in Liquid White Dwarf Interiors--Cooling and Seismological Effects

    Get PDF
    We assess the impact of the trace element ^{22}Ne on the cooling and seismology of a liquid C/O white dwarf (WD). Due to this elements' neutron excess, it sinks towards the interior as the liquid WD cools. The subsequent gravitational energy released slows the cooling of the WD by 0.25--1.6 Gyrs by the time it has completely crystallized, depending on the WD mass and the adopted sedimentation rate. The effects will make massive WDs or those in metal rich clusters (such as NGC 6791) appear younger than their true age. Our diffusion calculations show that the ^{22}Ne mass fraction in the crystallized core actually increases outwards. The stability of this configuration has not yet been determined. In the liquid state, the settled ^{22}Ne enhances the internal buoyancy of the interior and changes the periods of the high radial order g-modes by approximately 1%. Though a small adjustment, this level of change far exceeds the accuracy of the period measurements. A full assessment and comparison of mode frequencies for specific WDs should help constrain the still uncertain ^{22}Ne diffusion coefficient for the liquid interior.Comment: 26 pages (11 text pages with 15 figures); to appear in The Astrophysical Journa

    Plantes ornamentals (autòctones i al·lòctones) de Barcelona

    Get PDF
    A list of the ornamental plants (authochton and synanthropic) in Barcelona and its surroundings is given. The word, «ornamental» is taken in the widest sense and it includes not only the exotic plants of gardens but also any kind of trees, shrubs, and bushes that we can find at the least artificial spaces that surround the city

    Webifying the computerized execution of Clinical Practice Guidelines

    Get PDF
    The means through which Clinical Practice Guidelines are dissemi-nated and become accessible are a crucial factor in their later adoption by health care professionals. Making these guidelines available in Clinical Decision Sup-port Systems renders their application more personal and thus acceptable at the moment of care. Web technologies may play an important role in increasing the reach and dissemination of guidelines, but this promise remains largely unful-filled. There is a need for a guideline computer model that can accommodate a wide variety of medical knowledge along with a platform for its execution that can be easily used in mobile devices. This work presents the CompGuide frame-work, a web-based and service-oriented platform for the execution of Computer-Interpretable Guidelines. Its architecture comprises different modules whose in-teraction enables the interpretation of clinical tasks and the verification of clinical constraints and temporal restrictions of guidelines represented in OWL. It allows remote guideline execution with data centralization, more suitable for a work en-vironment where physicians are mobile and not bound to a machine. The solution presented in this paper encompasses a computer-interpretable guideline model, a web-based framework for guideline execution and an Application Programming Interface for the development of other guideline execution systems.This work is part-funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-028980 (PTDC/EEI-SII/1386/2012). The work of Tiago Oliveira is supported by doctoral grant by FCT (SFRH/BD/85291/2012)

    Outer boundary conditions for evolving cool white dwarfs

    Get PDF
    White dwarf evolution is essentially a gravothermal cooling process, which,for cool white dwarfs, sensitively depends on the treatment of the outer boundary conditions. We provide detailed outer boundary conditions appropriate for computing the evolution of cool white dwarfs employing detailed non-gray model atmospheres for pure H composition. We also explore the impact on the white dwarf cooling times of different assumptions for energy transfer in the atmosphere of cool white dwarfs. Detailed non-gray model atmospheres are computed taken into account non-ideal effects in the gas equation of state and chemical equilibrium, collision-induced absorption from molecules, and the Lyman alpha quasi-molecular opacity. Our results show that the use of detailed outer boundary conditions becomes relevant for effective temperatures lower than 5800 and 6100K for sequences with 0.60 and 0.90 M_sun, respectively. Detailed model atmospheres predict ages that are up to approx 10% shorter at log L/L_sun=-4 when compared with the ages derived using Eddington-like approximations at tau_Ross=2/3. We also analyze the effects of various assumptions and physical processes of relevance in the calculation of outer boundary conditions. In particular, we find that the Ly_alpha red wing absorption does not affect substantially the evolution of white dwarfs. White dwarf cooling timescales are sensitive to the surface boundary conditions for T_eff < 6000K. Interestingly enough, non-gray effects have little consequences on these cooling times at observable luminosities. In fact, collision-induced absorption processes, which significantly affect the spectra and colors of old white dwarfs with hydrogen-rich atmospheres, have not noticeable effects in their cooling rates, except throughout the Rosseland mean opacity.Comment: 6 pages, 9 figures, to be published in Astronomy and Astrophysic
    corecore