161 research outputs found

    Biological and functional relevance of CASP predictions.

    Get PDF
    Our goal is to answer the question: compared with experimental structures, how useful are predicted models for functional annotation? We assessed the functional utility of predicted models by comparing the performances of a suite of methods for functional characterization on the predictions and the experimental structures. We identified 28 sites in 25 protein targets to perform functional assessment. These 28 sites included nine sites with known ligand binding (holo-sites), nine sites that are expected or suggested by experimental authors for small molecule binding (apo-sites), and ten sites containing important motifs, loops, or key residues with important disease-associated mutations. We evaluated the utility of the predictions by comparing their microenvironments to the experimental structures. Overall structural quality correlates with functional utility. However, the best-ranked predictions (global) may not have the best functional quality (local). Our assessment provides an ability to discriminate between predictions with high structural quality. When assessing ligand-binding sites, most prediction methods have higher performance on apo-sites than holo-sites. Some servers show consistently high performance for certain types of functional sites. Finally, many functional sites are associated with protein-protein interaction. We also analyzed biologically relevant features from the protein assemblies of two targets where the active site spanned the protein-protein interface. For the assembly targets, we find that the features in the models are mainly determined by the choice of template

    Different factors are associated with sex hormones and Leydig cell function in Israelis and Palestinians in Jerusalem

    Get PDF
    Total testosterone (TT) is known to influence health and virility in men. Among men from United States and Europe, numerous sociodemographic and lifestyle factors were reported to be associated with TT. However, associations with TT and Leydig cell function in the Middle East are poorly described. A cross-sectional, population-based sample had a structured interview, physical examinations, and blood tests in two hospitals in Jerusalem, Israel. A subsample (25- to 44-year-old men, n = 286: 124 Israelis, 162 Palestinians) had sex hormone measurements. The primary outcomes were TT and free testosterone/luteinizing hormone (FT/LH) ratio, representing Leydig cell function. Associations with sociodemographic and lifestyle factors, body mass index (BMI), and physical activity (PA) were evaluated using multivariable linear regression. Compared with Palestinians, Israelis had similar TT (4.81 vs. 5.09 ng/mL, p =.405) and higher FT/LH (31.2 vs. 25.8 ng/IU, p =.002). In ln-transformed values, marital status had a stronger association in Palestinians (P for interaction = 0.03). Age, BMI, and PA had a stronger association with TT in Israelis with significant interactions with ethnicity. BMI <25 and a higher PA quartile were associated with a higher TT (p <.001). Among Israelis, age (p =.007), married marital status (p =.007), and BMI <25 were significantly associated with FT/LH. No associations of any factors were identified among Palestinians. Associations with several modifiable factors identified in Western samples were replicated in Israelis and to a lesser degree in Palestinians. Different relationships of several factors with TT and FT/LH could result from ethnically diverse genetic, sociodemographic, and behavioral characteristics that warrant further research

    Metformin as an Adjunctive Therapy for Pancreatic Cancer: A Review of the Literature on Its Potential Therapeutic Use

    Get PDF
    Pancreatic ductal adenocarcinoma has the worst prognosis of any cancer. New adjuvant chemotherapies are urgently required, which are well tolerated by patients with unresectable cancers. This paper reviews the existing proof of concept data, namely laboratory, pharmacoepidemiological, experimental medicine and clinical trial evidence for investigating metformin in patients with pancreatic ductal adenocarcinoma. Laboratory evidence shows metformin inhibits mitochondrial ATP synthesis which directly and indirectly inhibits carcinogenesis. Drug–drug interactions of metformin with proton pump inhibitors and histamine H2-receptor antagonists may be of clinical relevance and pertinent to future research of metformin in pancreatic ductal adenocarcinoma. To date, most cohort studies have demonstrated a positive association with metformin on survival in pancreatic ductal adenocarcinoma, although there are many methodological limitations with such study designs. From experimental medicine studies, there are sparse data in humans. The current trials of metformin have methodological limitations. Two small randomized controlled trials (RCTs) reported null findings, but there were potential inequalities in cancer staging between groups and poor compliance with the intervention. Proof of concept data, predominantly from laboratory work, supports assessing metformin as an adjunct for pancreatic ductal adenocarcinoma in RCTs. Ideally, more experimental medicine studies are needed for proof of concept. However, many feasibility criteria need to be answered before such trials can progress

    Inhibition of Effector Function but Not T Cell Activation and Increase in FoxP3 Expression in T Cells Differentiated in the Presence of PP14

    Get PDF
    Background: T-helper polarization of naïve T cells is determined by a complex mechanism that involves many factors, eventually leading to activation of Th1, Th2, or Th17 responses or alternatively the generation of regulatory T cells. Placental Protein 14 (PP14) is a 28 kDa glycoprotein highly secreted in early pregnancy that is able to desensitize T cell receptor (TCR) signaling and modulate T cell activation. Methodology/Principal Findings: Prolonged antigen-specific stimulation of T cells in the presence of PP14 resulted in an impaired secretion of IFN-c, IL-5 and IL-17 upon restimulation, although the cells proliferated and expressed activation markers. Furthermore, the generation of regulatory CD4 + CD25 high Foxp3 + T cells was induced in the presence of PP14, in both antigen-specific as well as polyclonal stimulation. In accordance with previous reports, we found that the induction of FoxP3 expression by PP14 is accompanied by down regulation of the PI3K-mTOR signaling pathway. Conclusions/Significance: These data suggest that PP14 arrests T cells in a unique activated state that is not accompanied with the acquisition of effector function, together with promoting the generation of regulatory T cells. Taken together, our results may elucidate the role of PP14 in supporting immune tolerance in pregnancy by reducing T cell effector function

    Nonvirally Modified Autologous Primary Hepatocytes Correct Diabetes and Prevent Target Organ Injury in a Large Preclinical Model

    Get PDF
    BACKGROUND: Current gene- and cell-based therapies have significant limitations which impede widespread clinical application. Taking diabetes mellitus as a paradigm, we have sought to overcome these limitations by ex vivo electrotransfer of a nonviral insulin expression vector into primary hepatocytes followed by immediate autologous reimplantation in a preclinical model of diabetes. METHODS AND RESULTS: In a single 3-hour procedure, hepatocytes were isolated from a surgically resected liver wedge, electroporated with an insulin expression plasmid ex vivo and reimplanted intraparenchymally under ultrasonic guidance into the liver in each of 10 streptozotocin-induced diabetic Yorkshire pigs. The vector was comprised of a bifunctional, glucose-responsive promoter linked to human insulin cDNA. Ambient glucose concentrations appropriately altered human insulin mRNA expression and C-peptide secretion within minutes in vitro and in vivo. Treated swine showed correction of hyperglycemia, glucose intolerance, dyslipidemia and other metabolic abnormalities for > or = 47 weeks. Metabolic correction correlated significantly with the number of hepatocytes implanted. Importantly, we observed no hypoglycemia even under fasting conditions. Direct intrahepatic implantation of hepatocytes did not alter biochemical indices of liver function or induce abnormal hepatic lobular architecture. About 70% of implanted hepatocytes functionally engrafted, appeared histologically normal, retained vector DNA and expressed human insulin for > or = 47 weeks. Based on structural tissue analyses and transcriptome data, we showed that early correction of diabetes attenuated and even prevented pathological changes in the eye, kidney, liver and aorta. CONCLUSIONS: We demonstrate that autologous hepatocytes can be efficiently, simply and safely modified by electroporation of a nonviral vector to express, process and secrete insulin durably. This strategy, which achieved significant and sustained therapeutic efficacy in a large preclinical model without adverse effects, warrants consideration for clinical development especially as it could have broader future applications for the treatment of other acquired and inherited diseases for which systemic reconstitution of a specific protein deficiency is critical

    Previous fracture and subsequent fracture risk : a meta-analysis to update FRAX

    Get PDF
    A large international meta-analysis using primary data from 64 cohorts has quantified the increased risk of fracture associated with a previous history of fracture for future use in FRAX. The aim of this study was to quantify the fracture risk associated with a prior fracture on an international basis and to explore the relationship of this risk with age, sex, time since baseline and bone mineral density (BMD). We studied 665,971 men and 1,438,535 women from 64 cohorts in 32 countries followed for a total of 19.5 million person-years. The effect of a prior history of fracture on the risk of any clinical fracture, any osteoporotic fracture, major osteoporotic fracture, and hip fracture alone was examined using an extended Poisson model in each cohort. Covariates examined were age, sex, BMD, and duration of follow-up. The results of the different studies were merged by using the weighted β-coefficients. A previous fracture history, compared with individuals without a prior fracture, was associated with a significantly increased risk of any clinical fracture (hazard ratio, HR = 1.88; 95% CI = 1.72-2.07). The risk ratio was similar for the outcome of osteoporotic fracture (HR = 1.87; 95% CI = 1.69-2.07), major osteoporotic fracture (HR = 1.83; 95% CI = 1.63-2.06), or for hip fracture (HR = 1.82; 95% CI = 1.62-2.06). There was no significant difference in risk ratio between men and women. Subsequent fracture risk was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any clinical fracture (14%), osteoporotic fracture (17%), and for hip fracture (33%). The risk ratio for all fracture outcomes related to prior fracture decreased significantly with adjustment for age and time since baseline examination. A previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by BMD. The effect is similar in men and women. Its quantitation on an international basis permits the more accurate use of this risk factor in case finding strategies

    Body mass index and subsequent fracture risk:a meta-analysis to update FRAX

    Get PDF
    The aim of this international meta-analysis was to quantify the predictive value of BMI for incident fracture and relationship of this risk with age, sex, follow-up time, and BMD. A total of 1667922 men and women from 32 countries (63 cohorts), followed for a total of 16.0 million person-years were studied. 293325 had FN BMD measured (2.2 million person-years follow-up). An extended Poisson model in each cohort was used to investigate relationships between WHO-defined BMI categories (Underweight: &lt;18.5 kg/m2; Normal: 18.5-24.9 kg/m2; Overweight: 25.0-29.9 kg/m2; Obese I: 30.0-34.9 kg/m2; Obese II: ≥35.0 kg/m2) and risk of incident osteoporotic, major osteoporotic and hip fracture (HF). Inverse-variance weighted β-coefficients were used to merge the cohort-specific results. For the subset with BMD available, in models adjusted for age and follow-up time, the hazard ratio (95% CI) for HF comparing underweight with normal weight was 2.35 (2.10-2.60) in women and for men was 2.45 (1.90-3.17). Hip fracture risk was lower in overweight and obese categories compared to normal weight [obese II vs normal: women 0.66 (0.55-0.80); men 0.91 (0.66-1.26)]. Further adjustment for FN BMD T-score attenuated the increased risk associated with underweight [underweight vs normal: women 1.69 (1.47-1.96); men 1.46 (1.00-2.13)]. In these models, the protective effects of overweight and obesity were attenuated, and in both sexes, the direction of association reversed to higher fracture risk in Obese II category [Obese II vs Normal: women 1.24 (0.97-1.58); men 1.70 (1.06-2.75)]. Results were similar for other fracture outcomes. Underweight is a risk factor for fracture in both men and women regardless of adjustment for BMD. However, while overweight/obesity appeared protective in base models, they became risk factors after additional adjustment for FN BMD, particularly in the Obese II category. This effect in the highest BMI categories was of greater magnitude in men than women. These results will inform the second iteration of FRAX®.</p
    corecore