4,112 research outputs found
Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary II. Theoretical treatment
The structural characteristics of the perovskite- based ferroelectric
Pb(Zn1/3Nb2/3)O3-9%PbTiO3 at the morphotropic phase boundary (MPB) region
(x≃0.09) have been analyzed. The analysis is based on the symmetry
adapted free energy functions under the assumption that the total polarization
and the unit cell volume are conserved during the transformations between
various morphotropic phases. Overall features of the relationships between the
observed lattice constants at various conditions have been consistently
explained. The origin of the anomalous physical properties at MPB is discussed
Comparison between various notions of conserved charges in asymptotically AdS-spacetimes
We derive hamiltionian generators of asymptotic symmetries for general
relativity with asymptotic AdS boundary conditions using the ``covariant phase
space'' method of Wald et al. We then compare our results with other
definitions that have been proposed in the literature. We find that our
definition agrees with that proposed by Ashtekar et al, with the spinor
definition, and with the background dependent definition of Henneaux and
Teitelboim. Our definition disagrees with the one obtained from the
``counterterm subtraction method,'' but the difference is found to consist only
of a ``constant offset'' that is determined entirely in terms of the boundary
metric. We finally discuss and justify our boundary conditions by a linear
perturbation analysis, and we comment on generalizations of our boundary
conditions, as well as inclusion of matter fields.Comment: 64p, Latex, no figures, v2: references added, typos corrected, v3:
some equations correcte
Radio-mode feedback in local AGNs: dependence on the central black hole parameters
Radio mode feedback, in which most of the energy of an active galactic
nucleus (AGN) is released in a kinetic form via radio-emitting jets, is thought
to play an important role in the maintenance of massive galaxies in the
present-day Universe. We study the link between radio emission and the
properties of the central black hole in a large sample of local radio galaxies
drawn from the Sloan Digital Sky Survey (SDSS), based on the catalogue of Best
and Heckman (2012). Our sample is mainly dominated by massive black holes
(mostly in the range ) accreting at very low Eddington
ratios (typically ). In broad agreement with previously
reported trends, we find that radio galaxies are preferentially associated with
the more massive black holes, and that the radio loudness parameter seems to
increase with decreasing Eddington ratio. We compare our results with previous
studies in the literature, noting potential biases. The majority of the local
radio galaxies in our sample are currently in a radiatively inefficient
accretion regime, where kinetic feedback dominates over radiative feedback. We
discuss possible physical interpretations of the observed trends in the context
of a two-stage feedback process involving a transition in the underlying
accretion modes.Comment: accepted for publication in Monthly Notices of the Royal Astronomical
Societ
Universality of Nonperturbative Effects in c<1 Noncritical String Theory
Nonperturbative effects in c<1 noncritical string theory are studied using
the two-matrix model. Such effects are known to have the form fixed by the
string equations but the numerical coefficients have not been known so far.
Using the method proposed recently, we show that it is possible to determine
the coefficients for (p,q) string theory. We find that they are indeed finite
in the double scaling limit and universal in the sense that they do not depend
on the detailed structure of the potential of the two-matrix model.Comment: 17 page
2D Yang-Mills Theory as a Matrix String Theory
Quantization of two-dimensional Yang-Mills theory on a torus in the gauge
where the field strength is diagonal leads to twisted sectors that are
completely analogous to the ones that originate long string states in Matrix
String Theory. If these sectors are taken into account the partition function
is different from the standard one found in the literature and the invariance
of the theory under modular transformations of the torus appears to hold in a
stronger sense. The twisted sectors are in one-to-one correspondence with the
coverings of the torus without branch points, so they define by themselves a
string theory. A possible duality between this string theory and the
Gross-Taylor string is discussed, and the problems that one encounters in
generalizing this approach to interacting strings are pointed out. This talk is
based on a previous paper by the same authors, but it contains some new results
and a better interpretation of the results already obtained.Comment: 11 pages, LaTeX, 2 figures included with epsf. Talk presented at the
2nd Conference on Quantum aspects of Gauge Theories, Supersymmetry and
Unification, Corfu, Greece, 21-26 September 199
Light-cone Gauge NSR Strings in Noncritical Dimensions
Light-cone gauge NSR string theory in noncritical dimensions should
correspond to a string theory with a nonstandard longitudinal part.
Supersymmetrizing the bosonic case [arXiv:0909.4675], we formulate a
superconformal worldsheet theory for the longitudinal variables X^{\pm},
\psi^{\pm}. We show that with the transverse variables and the ghosts combined,
it is possible to construct a nilpotent BRST charge.Comment: 22 pages, 1 figur
Dynamics of a string coupled to gravitational waves - Gravitational wave scattering by a Nambu-Goto straight string
We study the perturbative dynamics of an infinite gravitating Nambu-Goto
string within the general-relativistic perturbation framework. We develop the
gauge invariant metric perturbation on a spacetime containing a
self-gravitating straight string with a finite thickness and solve the
linearized Einstein equation. In the thin string case, we show that the string
does not emit gravitational waves by its free oscillation in the first order
with respect to its oscillation amplitude, nevertheless the string actually
bends when the incidental gravitational waves go through it.Comment: Published in Physical Review D. Some explanations are changed to
clarify our point
Low Dopamine D2/D3 Receptor Availability is Associated with Steep Discounting of Delayed Rewards in Methamphetamine Dependence.
BackgroundIndividuals with substance use disorders typically exhibit a predilection toward instant gratification with apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among research participants who met DSM-IV criteria for methamphetamine (MA) dependence.MethodsFifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, and underwent positron emission tomography scanning with [(18)F]fallypride.ResultsMA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5).ConclusionsThese results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed
Modeling the momentum distributions of annihilating electron-positron pairs in solids
Measuring the Doppler broadening of the positron annihilation radiation or
the angular correlation between the two annihilation gamma quanta reflects the
momentum distribution of electrons seen by positrons in the
material.Vacancy-type defects in solids localize positrons and the measured
spectra are sensitive to the detailed chemical and geometric environments of
the defects. However, the measured information is indirect and when using it in
defect identification comparisons with theoretically predicted spectra is
indispensable. In this article we present a computational scheme for
calculating momentum distributions of electron-positron pairs annihilating in
solids. Valence electron states and their interaction with ion cores are
described using the all-electron projector augmented-wave method, and atomic
orbitals are used to describe the core states. We apply our numerical scheme to
selected systems and compare three different enhancement (electron-positron
correlation) schemes previously used in the calculation of momentum
distributions of annihilating electron-positron pairs within the
density-functional theory. We show that the use of a state-dependent
enhancement scheme leads to better results than a position-dependent
enhancement factor in the case of ratios of Doppler spectra between different
systems. Further, we demonstrate the applicability of our scheme for studying
vacancy-type defects in metals and semiconductors. Especially we study the
effect of forces due to a positron localized at a vacancy-type defect on the
ionic relaxations.Comment: Submitted to Physical Review B on September 1 2005. Revised
manuscript submitted on November 14 200
Origin of second-harmonic generation in the incommensurate phase of K2SeO4
We show that a ferroelectric phase transition takes place in the
incommensurate phase of the K2SeO4 crystal. The ferroelectric character of the
IC phase explains the second-harmonic generation observed in the corresponding
temperature range.Comment: 5 pages, 1 figur
- …
