965 research outputs found
Percolation-like Scaling Exponents for Minimal Paths and Trees in the Stochastic Mean Field Model
In the mean field (or random link) model there are points and inter-point
distances are independent random variables. For and in the
limit, let (maximum number of steps
in a path whose average step-length is ). The function
is analogous to the percolation function in percolation theory:
there is a critical value at which becomes
non-zero, and (presumably) a scaling exponent in the sense
. Recently developed probabilistic
methodology (in some sense a rephrasing of the cavity method of Mezard-Parisi)
provides a simple albeit non-rigorous way of writing down such functions in
terms of solutions of fixed-point equations for probability distributions.
Solving numerically gives convincing evidence that . A parallel
study with trees instead of paths gives scaling exponent . The new
exponents coincide with those found in a different context (comparing optimal
and near-optimal solutions of mean-field TSP and MST) and reinforce the
suggestion that these scaling exponents determine universality classes for
optimization problems on random points.Comment: 19 page
RiffleScrambler - a memory-hard password storing function
We introduce RiffleScrambler: a new family of directed acyclic graphs and a
corresponding data-independent memory hard function with password independent
memory access. We prove its memory hardness in the random oracle model.
RiffleScrambler is similar to Catena -- updates of hashes are determined by a
graph (bit-reversal or double-butterfly graph in Catena). The advantage of the
RiffleScrambler over Catena is that the underlying graphs are not predefined
but are generated per salt, as in Balloon Hashing. Such an approach leads to
higher immunity against practical parallel attacks. RiffleScrambler offers
better efficiency than Balloon Hashing since the in-degree of the underlying
graph is equal to 3 (and is much smaller than in Ballon Hashing). At the same
time, because the underlying graph is an instance of a Superconcentrator, our
construction achieves the same time-memory trade-offs.Comment: Accepted to ESORICS 201
Routed Planar Networks
Modeling a road network as a planar graph seems very natural. However, in studying continuum limits of such networks it is useful to take {\em routes} rather than {\em edges} as primitives. This article is intended to introduce the relevant (discrete setting) notion of {\em routed network} to graph theorists. We give a naive classification of all 71 topologically different such networks on 4 leaves, and pose a variety of challenging research questions
Multicritical continuous random trees
We introduce generalizations of Aldous' Brownian Continuous Random Tree as
scaling limits for multicritical models of discrete trees. These discrete
models involve trees with fine-tuned vertex-dependent weights ensuring a k-th
root singularity in their generating function. The scaling limit involves
continuous trees with branching points of order up to k+1. We derive explicit
integral representations for the average profile of this k-th order
multicritical continuous random tree, as well as for its history distributions
measuring multi-point correlations. The latter distributions involve
non-positive universal weights at the branching points together with fractional
derivative couplings. We prove universality by rederiving the same results
within a purely continuous axiomatic approach based on the resolution of a set
of consistency relations for the multi-point correlations. The average profile
is shown to obey a fractional differential equation whose solution involves
hypergeometric functions and matches the integral formula of the discrete
approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
Spectral coarse graining for random walk in bipartite networks
Many real-world networks display a natural bipartite structure, while
analyzing or visualizing large bipartite networks is one of the most
challenges. As a result, it is necessary to reduce the complexity of large
bipartite systems and preserve the functionality at the same time. We observe,
however, the existing coarse graining methods for binary networks fail to work
in the bipartite networks. In this paper, we use the spectral analysis to
design a coarse graining scheme specifically for bipartite networks and keep
their random walk properties unchanged. Numerical analysis on artificial and
real-world bipartite networks indicates that our coarse graining scheme could
obtain much smaller networks from large ones, keeping most of the relevant
spectral properties. Finally, we further validate the coarse graining method by
directly comparing the mean first passage time between the original network and
the reduced one.Comment: 7 pages, 3 figure
Empires and Percolation: Stochastic Merging of Adjacent Regions
We introduce a stochastic model in which adjacent planar regions merge
stochastically at some rate , and observe analogies with the
well-studied topics of mean-field coagulation and of bond percolation. Do
infinite regions appear in finite time? We give a simple condition on
for this {\em hegemony} property to hold, and another simple condition for it
to not hold, but there is a large gap between these conditions, which includes
the case . For this case, a non-rigorous analytic
argument and simulations suggest hegemony.Comment: 13 page
Feller property and infinitesimal generator of the exploration process
We consider the exploration process associated to the continuous random tree
(CRT) built using a Levy process with no negative jumps. This process has been
studied by Duquesne, Le Gall and Le Jan. This measure-valued Markov process is
a useful tool to study CRT as well as super-Brownian motion with general
branching mechanism. In this paper we prove this process is Feller, and we
compute its infinitesimal generator on exponential functionals and give the
corresponding martingale
Cutoff for the East process
The East process is a 1D kinetically constrained interacting particle system,
introduced in the physics literature in the early 90's to model liquid-glass
transitions. Spectral gap estimates of Aldous and Diaconis in 2002 imply that
its mixing time on sites has order . We complement that result and show
cutoff with an -window.
The main ingredient is an analysis of the front of the process (its rightmost
zero in the setup where zeros facilitate updates to their right). One expects
the front to advance as a biased random walk, whose normal fluctuations would
imply cutoff with an -window. The law of the process behind the
front plays a crucial role: Blondel showed that it converges to an invariant
measure , on which very little is known. Here we obtain quantitative
bounds on the speed of convergence to , finding that it is exponentially
fast. We then derive that the increments of the front behave as a stationary
mixing sequence of random variables, and a Stein-method based argument of
Bolthausen ('82) implies a CLT for the location of the front, yielding the
cutoff result.
Finally, we supplement these results by a study of analogous kinetically
constrained models on trees, again establishing cutoff, yet this time with an
-window.Comment: 33 pages, 2 figure
Random tree growth by vertex splitting
We study a model of growing planar tree graphs where in each time step we
separate the tree into two components by splitting a vertex and then connect
the two pieces by inserting a new link between the daughter vertices. This
model generalises the preferential attachment model and Ford's -model
for phylogenetic trees. We develop a mean field theory for the vertex degree
distribution, prove that the mean field theory is exact in some special cases
and check that it agrees with numerical simulations in general. We calculate
various correlation functions and show that the intrinsic Hausdorff dimension
can vary from one to infinity, depending on the parameters of the model.Comment: 47 page
Random multi-index matching problems
The multi-index matching problem (MIMP) generalizes the well known matching
problem by going from pairs to d-uplets. We use the cavity method from
statistical physics to analyze its properties when the costs of the d-uplets
are random. At low temperatures we find for d>2 a frozen glassy phase with
vanishing entropy. We also investigate some properties of small samples by
enumerating the lowest cost matchings to compare with our theoretical
predictions.Comment: 22 pages, 16 figure
- …
