1,545 research outputs found
Consequences of anisotropy in electrical charge storage: application to the characterization by the mirror method of TiO2 rutile
This article is devoted first to anisotropic distributions of stored electric
charges in isotropic materials, second to charge trapping and induced
electrostatic potential in anisotropic dielectrics. On the one hand, we examine
the case of anisotropic trapped charge distributions in linear homogeneous
isotropic (LHI) insulators, obtained after an electron irradiation in a
scanning electron microscope. This injection leads to the formation of a mirror
image
Description beyond the mean field approximation of an electrolyte confined between two planar metallic electrodes
We study an electrolyte confined in a slab of width composed of two
grounded metallic parallel electrodes. We develop a description of this system
in a low coupling regime beyond the mean field (Poisson--Boltzmann)
approximation. There are two ways to model the metallic boundaries: as ideal
conductors in which the electric potential is zero and it does not fluctuate,
or as good conductors in which the average electric potential is zero but the
thermal fluctuations of the potential are not zero. This latter model is more
realistic. For the ideal conductor model we find that the disjoining pressure
is positive behaves as for large separations with a prefactor that is
universal, i.e. independent of the microscopic constitution of the system. For
the good conductor boundaries the disjoining pressure is negative and it has an
exponential decay for large . We also compute the density and electric
potential profiles inside the electrolyte. These are the same in both models.
If the electrolyte is charge asymmetric we find that the system is not locally
neutral and that a non-zero potential difference builds up between any
electrode and the interior of the system although both electrodes are grounded.Comment: 16 pages, 5 figures, added a new appendix B and a discussion on ideal
conductors vs. good conductor
UK temporomandibular joint replacement database: a report on one-year outcomes
Alloplastic temporomandibular joint (TMJ) replacements are increasingly subspecialised, and supraregional centres that treat sufficient numbers to ensure high standards are emerging. Having recently reported the introduction of a national TMJ joint replacement database that is endorsed by the British Association of TMJ Surgeons (BATS), we now present the first-year outcomes. This was a review of all data in the BATS National Case Registration of TMJ Replacement as of June 2014. A total of 252 one-year outcome records were available. Key outcomes were median (IQR) improvements in interincisal distance of 9 (4-15) mm (p<0.001) and worst-sided pain score of 6 (4-8) (p<0.001). Pain scores improved or remained static at one year in all but 3 (2%) patients. There was a significant improvement in the proportion of patients who reported a good, very good, or outstanding quality of life at one year (38% at baseline to 87% at one year; p<0.001). While outcome reports from single centres for alloplastic TMJ replacements have already been published in the United Kingdom, this is the first dedicated national database in this country that will yield valuable longitudinal follow-up data. Outcomes were comparable with smaller published series and showed improvements in pain, dietary intake, quality of life, and function, with few outliers. The database has recently moved to a new software system and we hope to publish three-year and five-year outcomes in due course
Construction and validation of a questionnaire to assess student satisfaction with mathematics learning materials
Sixth Edition Technological Ecosystems for Enhancing MulticulturalityMathematics is an essential branch for the scientific development and its study is mandatory in most university degrees. However, currently the level of academic performance and motivation of students to learn this science is not the desired one. The students can use different learning tools inside and outside the math classroom, enhancing the quality of the learning materials that are designed essentially to facilitate the learning of mathematics. The present research project aims to determine the validity and reliability of a measurement instrument that allows theassessment of the satisfaction of the students with the availablelearning materials. To fulfill the objectives of this research, the method of survey was used. A study with a quantitative approach was developed, which led to the design and validation of a questionnaire by a group of 7 experts. The validation closed after applying a pilot study with 728 students. It concluded positively, obtaining nine factors that coincide with the revision of the literature: technological quality, quality of content, visual quality, didactic significance, adequacy of content, relationship between theory and practice, involvement, contribution to learning, relevance and interaction between educational actors. The results of this questionnaire provide to the international scientific community with relevant information for the design, selection, and use of study materials in the classrooms, which will contribute to raising the levels of student engagement, and their academic performance in mathematics, secondaril
Charge-Fluctuation-Induced Non-analytic Bending Rigidity
In this Letter, we consider a neutral system of mobile positive and negative
charges confined on the surface of curved films. This may be an appropriate
model for: i) a highly charged membrane whose counterions are confined to a
sheath near its surface; ii) a membrane composed of an equimolar mixture of
anionic and cationic surfactants in aqueous solution. We find that the charge
fluctuations contribute a non-analytic term to the bending rigidity that varies
logarithmically with the radius of curvature. This may lead to spontaneous
vesicle formation, which is indeed observed in similar systems.Comment: Revtex, 9 pages, no figures, submitted to PR
Steric Effects in Electrolytes: A Modified Poisson-Boltzmann Equation
The adsorption of large ions from solution to a charged surface is
investigated theoretically. A generalized Poisson--Boltzmann equation, which
takes into account the finite size of the ions is presented. We obtain
analytical expressions for the electrostatic potential and ion concentrations
at the surface, leading to a modified Grahame equation. At high surface charge
densities the ionic concentration saturates to its maximum value. Our results
are in agreement with recent experiments.Comment: 4 pages, 2 figure
Hydrophobic interactions: an overview
We present an overview of the recent progress that has been made in
understanding the origin of hydrophobic interactions. We discuss the different
character of the solvation behavior of apolar solutes at small and large length
scales. We emphasize that the crossover in the solvation behavior arises from a
collective effect, which means that implicit solvent models should be used with
care. We then discuss a recently developed explicit solvent model, in which the
solvent is not described at the atomic level, but rather at the level of a
density field. The model is based upon a lattice-gas model, which describes
density fluctuations in the solvent at large length scales, and a Gaussian
model, which describes density fluctuations at smaller length scales. By
integrating out the small length scale field, a Hamiltonian is obtained, which
is a function of the binary, large-length scale field only. This makes it
possible to simulate much larger systems than hitherto possible as demonstrated
by the application of the model to the collapse of an ideal hydrophobic
polymer. The results show that the collapse is dominated by the dynamics of the
solvent, in particular the formation of a vapor bubble of critical size.
Implications of these findings to the understanding of pressure denaturation of
proteins are discussed.Comment: 10 pages, 4 figure
Charge-Reversal Instability in Mixed Bilayer Vesicles
Bilayer vesicles form readily from mixtures of charged and neutral
surfactants. When such a mixed vesicle binds an oppositely-charged object, its
membrane partially demixes: the adhesion zone recruits more charged surfactants
from the rest of the membrane. Given an unlimited supply of adhering objects
one might expect the vesicle to remain attractive until it was completely
covered. Contrary to this expectation, we show that a vesicle can instead
exhibit {\it adhesion saturation,} partitioning spontaneously into an
attractive zone with definite area fraction, and a repulsive zone. The latter
zone rejects additional incoming objects because counterions on the interior of
the vesicle migrate there, effectively reversing the membrane's charge. The
effect is strongest at high surface charge densities, low ionic strength, and
with thin, impermeable membranes. Adhesion saturation in such a situation has
recently been observed experimentally [H. Aranda-Espinoza {\it et al.}, {\sl
Science} {\bf285} 394--397 (1999)]
The electrical double layer for a fully asymmetric electrolyte around a spherical colloid: an integral equation study
The hypernetted chain/mean spherical approximation (HNC/MSA) integral
equation is obtained and solved numerically for a totally asymmetric primitive
model electrolyte around a spherical macroparticle. The ensuing radial
distribution functions show a very good agreement when compared to our Monte
Carlo and molecular dynamics simulations for spherical geometry and with
respect to previous anisotropic reference HNC calculations in the planar limit.
We report an analysis of the potential vs charge relationship, radial
distribution functions, mean electrostatic potential and cumulative reduced
charge for representative cases of 1:1 and 2:2 salts with a size asymmetry
ratio of 2. Our results are collated with those of the Modified Gouy-Chapman
(MGC) and unequal radius Modified Gouy-Chapman (URMGC) theories and with those
of HNC/MSA in the restricted primitive model (RPM) to assess the importance of
size asymmetry effects. One of the most striking characteristics found is
that,\textit{contrary to the general belief}, away from the point of zero
charge the properties of an asymmetric electrical double layer (EDL) are not
those corresponding to a symmetric electrolyte with the size and charge of the
counterion, i.e. \textit{counterions do not always dominate}. This behavior
suggests the existence of a new phenomenology in the EDL that genuinely belongs
to a more realistic size-asymmetric model where steric correlations are taken
into account consistently. Such novel features can not be described by
traditional mean field theories like MGC, URMGC or even by enhanced formalisms,
like HNC/MSA, if they are based on the RPM.Comment: 29 pages, 13 figure
- …
