216,128 research outputs found
A system architecture for a planetary rover
Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations)
CFD Mixing Analysis of Jets Injected from Straight and Slanted Slots into Confined Crossflow in Rectangular Ducts
A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75
Analytical study of catalytic reactors for hydrazine decomposition. One and two dimensional steady-state programs, computer programs manual
Programs manual for one-dimensional and two- dimensional steady state models of catalyzed hydrazine decomposition reaction chamber
Calculation of material properties and ray tracing in transformation media
Complex and interesting electromagnetic behavior can be found in spaces with
non-flat topology. When considering the properties of an electromagnetic medium
under an arbitrary coordinate transformation an alternative interpretation
presents itself. The transformed material property tensors may be interpreted
as a different set of material properties in a flat, Cartesian space. We
describe the calculation of these material properties for coordinate
transformations that describe spaces with spherical or cylindrical holes in
them. The resulting material properties can then implement invisibility cloaks
in flat space. We also describe a method for performing geometric ray tracing
in these materials which are both inhomogeneous and anisotropic in their
electric permittivity and magnetic permeability
Macromolecular separation through a porous surface
A new technique for the separation of macromolecules is proposed and
investigated. A thin mesh with pores comparable to the radius of gyration of a
free chain is used to filter chains according to their length. Without a field
it has previously been shown that the permeability decays as a power law with
chain length. However by applying particular configurations of pulsed fields,
it is possible to have a permeability that decays as an exponential. This
faster decay gives much higher resolution of separation. We also propose a
modified screen containing an array of holes with barb-like protrusions running
parallel to the surface. When static friction is present between the
macromolecule and the protrusion, some of the chains get trapped for long
durations of time. By using this and a periodic modulation of an applied
electric field, high resolution can be attained.Comment: 18 pages latex, 6 postscript figures, using psfi
Cardiotachometer with linear beat-to-beat frequency response
Cardiotachometer detects and displays the human heart rate during physiological studies. It provides linear response to the heart rate, records heart rate during rest and under heavy stress, provides a beat-to-beat indication of changes in heart rate, and is relatively free of interfering signals from activities other than the heart rate
Summary of solid rocket motor plume flow field and radiation analyses
The inclusion of solid propellant plume flow field effects in analyses and design of the space vehicle was investigated. Results of these analyses are summarized
Baryons Still Trace Dark Matter: Probing CMB Lensing Maps For Hidden Isocurvature
Compensated isocurvature perturbations (CIPs) are primordial fluctuations that balance baryon and dark-matter isocurvature to leave the total matter density unperturbed. The effects of CIPs on the cosmic microwave background (CMB) anisotropies are similar to those produced by weak lensing of the CMB: smoothing of the power spectrum and generation of non-Gaussian features. Here, an entirely new CIP contribution to the standard estimator for the lensing-potential power spectrum is derived. Planck measurements of the temperature and polarization power spectrum, as well as estimates of CMB lensing, are used to place limits on the variance of the CIP fluctuations on CMB scales, Δ2rms(RCMB). The resulting constraint of Δ2rms(RCMB)\u3c4.3×10−3 at 95% confidence level (CL) using this new technique improves on past work by a factor of ∼3. We find that for Planck data our constraints almost reach the sensitivity of the optimal CIP estimator. The method presented here is currently the most sensitive probe of the amplitude of a scale-invariant CIP power spectrum, ACIP, placing an upper limit of ACIP\u3c0.017 at 95% CL. Future measurements of the large-scale CMB lensing-potential power spectrum could probe CIP amplitudes as low as Δ2rms(RCMB)=8×10−5 at 95% CL (corresponding to ACIP=3.2×10−4)
Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients
We analyze the reflection and transmission coefficients calculated from
transfer matrix simulations on finite lenghts of electromagnetic metamaterials,
to determine the effective permittivity and permeability. We perform this
analysis on structures composed of periodic arrangements of wires, split ring
resonators (SRRs) and both wires and SRRs. We find the recovered
frequency-dependent permittivity and permeability are entirely consistent with
analytic expressions predicted by effective medium arguments. Of particular
relevance are that a wire medium exhibits a frequency region in which the real
part of permittivity is negative, and SRRs produce a frequency region in which
the real part of permeability is negative. In the combination structure, at
frequencies where both the recovered real part of permittivity and permeability
are simultaneously negative, the real part of the index-of-refraction is found
also to be unambigously negative.Comment: *.pdf file, 5 figure
WIRIS OM tools: a semantic formula editor
With the increasing reliance on computers for the automatic processing
of information a new method is needed for editing mathematical formulae.
We are used to WYSIWYG editors that produce beautiful presentations of
formulae and store the typesetting primitives rather than the meaning of the
formulas. However, new services such as database searching or calculation
web-services work best if they have access to the semantic information behind
a formula. This can only be done with a new generation of formula editors.
In this paper we present WIRIS OM Tools [17], a semantic oriented formula
editor which addresses these concerns. It is based on the OpenMath language
and a suitable transformation process between OpenMath and MathML ex-
pressions. Additionally, this approach adds new features for the users such
as error, type and syntax checking. The editor is currently being used in the
LeActiveMath and WebALT projects
- …
