34,231 research outputs found
Cryogenic, polar lunar observatories
In a geological vein, it is noted that some permanently shadowed regions on the Moon could provide natural passive cooling environments for astronomical detectors. A telescope located in one of the low, dark, polar regions could operate with only passive cooling at 40 K or perhaps lower, depending on how well it could be insulated from the ground and surrounded by radiation shields to block heat and light from any nearby warm or illuminated objects
Recent developments in CID imaging
Readout of CID imaging arrays was first performed by injecting and detecting the signal charge from each sensing site in sequence. A new readout method, termed parallel injection, has been developed in which the functions of signal charge detection and injection have been separated. The level of signal charge at each sensing site is detected during a line scan, and during the line retrace interval, all charge in the selected line is injected. The parallel injection technique is well adapted to TV scan formats in that the signal is read out at high speed, line by line. A 244 line by 248 element TV compatible imager, employing this technique and including an on chip preamplifier, has been constructed and operation demonstrated
An extended soft-cube model for the thermal accommodation of gas atoms on solid surfaces
A numerical soft cube model was developed for calculating thermal accommodation coefficients alpha and trapping fractions f sub t for the interaction of gases incident upon solid surfaces. A semiempirical correction factor c which allows the calculation of alpha and f sub t when the collision times are long compared to the surface oscillator period were introduced. The processes of trapping, evaporation, and detailed balancing were discussed. The numerical method was designed to treat economically and with moderate (+ or - 20 percent) accuracy the dependence of alpha and f sub t on finite and different surface and gas temperatures for a large number of gas/surface combinations. Comparison was made with experiments of rare gases on tungsten and on alkalis, as well as one astrophysical case of H2 on graphite. The dependence of alpha on the soft cube dimensionless parameters is presented graphically
Centre Commissioned External Review (CCER) of the IWMI-TATA Water Policy Research Program
Agricultural research / Research projects / Project appraisal / Financing / Institutional development / Evaluation / Water policy / Water management / Irrigation management / Groundwater
Multi-modal information processing for visual workload relief
The simultaneous performance of two single-dimensional compensatory tracking tasks, one with the left hand and one with the right hand, is discussed. The tracking performed with the left hand was considered the primary task and was performed with a visual display or a quickened kinesthetic-tactual (KT) display. The right-handed tracking was considered the secondary task and was carried out only with a visual display. Although the two primary task displays had afforded equivalent performance in a critical tracking task performed alone, in the dual-task situation the quickened KT primary display resulted in superior secondary visual task performance. Comparisons of various combinations of primary and secondary visual displays in integrated or separated formats indicate that the superiority of the quickened KT display is not simply due to the elimination of visual scanning. Additional testing indicated that quickening per se also is not the immediate cause of the observed KT superiority
First and second simulator evaluations of advanced integrated display and control systems
Advanced integrated visual and control systems simulator evaluations for post-Apollo manned spacecraf
Comparison of numerical methods for the calculation of cold atom collisions
Three different numerical techniques for solving a coupled channel
Schroedinger equation are compared. This benchmark equation, which describes
the collision between two ultracold atoms, consists of two channels, each
containing the same diagonal Lennard-Jones potential, one of positive and the
other of negative energy. The coupling potential is of an exponential form. The
methods are i) a recently developed spectral type integral equation method
based on Chebyshev expansions, ii) a finite element expansion, and iii) a
combination of an improved Numerov finite difference method and a Gordon
method. The computing time and the accuracy of the resulting phase shift is
found to be comparable for methods i) and ii), achieving an accuracy of ten
significant figures with a double precision calculation. Method iii) achieves
seven significant figures. The scattering length and effective range are also
obtained.Comment: 22 pages, 3 figures, submitted to J. Comput. Phys. documentstyle
[thmsa,sw20aip]{article} in .te
Average and worst-case specifications of precipitating auroral electron environment
The precipitation electrons in the auroral environment are highly variable in their energy and intensity in both space and time. As such they are a source of potential hazard to the operation of the Space Shuttle and other large spacecraft operating in polar orbit. In order to assess these hazards both the average and extreme states of the precipitating electrons must be determined. Work aimed at such a specification is presented. First results of a global study of the average characteristics are presented. In this study the high latitude region was divided into spatial elements in magnetic local time and corrected geomagnetic latitude. The average electron spectrum was then determined in each spatial element for seven different levels of activity as measured by K sub p using an extremely large data set of auroral observations. Second a case study of an extreme auroral electron environment is presented, in which the electrons are accelerated through field aligned potential as high as 30,000 volts and in which the spacecraft is seen to charge negatively to a potential approaching .5 kilovolts
- …
