1,474 research outputs found
Nuclear Track Detectors. Searches for Exotic Particles
We used Nuclear Track Detectors (NTD) CR39 and Makrofol for many purposes: i)
Exposures at the SPS and at lower energy accelerator heavy ion beams for
calibration purposes and for fragmentation studies. ii) Searches for GUT and
Intermediate Mass Magnetic Monopoles (IMM), nuclearites, Q-balls and
strangelets in the cosmic radiation. The MACRO experiment in the Gran Sasso
underground lab, with ~1000 m^2 of CR39 detectors (plus scintillators and
streamer tubes), established an upper limit for superheavy GUT poles at the
level of 1.4x10^-16 cm^-2 s^-1 sr^-1 for 4x10^-5 <beta<1. The SLIM experiment
at the high altitude Chacaltaya lab (5230 m a.s.l.), using 427 m^2 of CR39
detectors exposed for 4.22 y, gave an upper limit for IMMs of ~1.3x10^-15 cm^-2
s^-1 sr^-1. The experiments yielded interesting upper limits also on the fluxes
of the other mentioned exotic particles. iii) Environmental studies, radiation
monitoring, neutron dosimetry.Comment: Talk given at "New Trends In High-Energy Physics" (experiment,
phenomenology, theory) Yalta, Crimea, Ukraine, September 27-October 4, 200
High frequency mechanical excitation of a silicon nanostring with piezoelectric aluminum nitride layers
A strong trend for quantum based technologies and applications follows the
avenue of combining different platforms to exploit their complementary
technological and functional advantages. Micro and nano-mechanical devices are
particularly suitable for hybrid integration due to the easiness of fabrication
at multi-scales and their pervasive coupling with electrons and photons. Here,
we report on a nanomechanical technological platform where a silicon chip is
combined with an aluminum nitride layer. Exploiting the AlN piezoelectricity,
Surface Acoustic Waves are injected in the Si layer where the material has been
localy patterned and etched to form a suspended nanostring. Characterizing the
nanostring vertical displacement induced by the SAW, we found an external
excitation peak efficiency in excess of 500 pm/V at 1 GHz mechanical frequency.
Exploiting the long term expertise in silicon photonic and electronic devices
as well as the SAW robustness and versatility, our technological platform
represents a strong candidate for hybrid quantum systems
High-performance planar light-emitting diode
Planar light-emitting diodes (LEDs) fabricated within a single high-mobility
quantum well are demonstrated. Our approach leads to a dramatic reduction of
radiative lifetime and junction area with respect to conventional vertical
LEDs, promising very high-frequency device operation. Devices were fabricated
by UV lithography and wet chemical etching starting from p-type
modulation-doped AlGaAs/GaAs heterostructures grown by molecular beam epitaxy.
Electrical and optical measurements from room temperature down to 1.8 K show
high spectral purity and high external efficiency. Time-resolved measurements
yielded extremely short recombination times of the order of 50 ps,
demonstrating the relevance of the present scheme for high-frequency device
applications in the GHz range.Comment: 5 pages, 3 figure
Surface acoustic wave-induced electroluminescence intensity oscillation in planar light-emitting devices
Electroluminescence emission from surface acoustic wave-driven light-emitting
diodes (SAWLEDs) is studied by means of time-resolved techniques. We show that
the intensity of the SAW-induced electroluminescence is modulated at the SAW
frequency (~1 GHz), demonstrating electron injection into the p-type region
synchronous with the SAW wavefronts.Comment: 4 pages, 3 figure
Search for Intermediate Mass Magnetic Monopoles and Nuclearites with the SLIM experiment
SLIM is a large area experiment (440 m2) installed at the Chacaltaya cosmic
ray laboratory since 2001, and about 100 m2 at Koksil, Himalaya, since 2003. It
is devoted to the search for intermediate mass magnetic monopoles (107-1013
GeV/c2) and nuclearites in the cosmic radiation using stacks of CR39 and
Makrofol nuclear track detectors. In four years of operation it will reach a
sensitivity to a flux of about 10-15 cm-2 s-1 sr-1. We present the results of
the calibration of CR39 and Makrofol and the analysis of a first sample of the
exposed detector.Comment: Presented at the 22nd ICNTS, Barcelona 200
Intelligent Financial Fraud Detection Practices: An Investigation
Financial fraud is an issue with far reaching consequences in the finance
industry, government, corporate sectors, and for ordinary consumers. Increasing
dependence on new technologies such as cloud and mobile computing in recent
years has compounded the problem. Traditional methods of detection involve
extensive use of auditing, where a trained individual manually observes reports
or transactions in an attempt to discover fraudulent behaviour. This method is
not only time consuming, expensive and inaccurate, but in the age of big data
it is also impractical. Not surprisingly, financial institutions have turned to
automated processes using statistical and computational methods. This paper
presents a comprehensive investigation on financial fraud detection practices
using such data mining methods, with a particular focus on computational
intelligence-based techniques. Classification of the practices based on key
aspects such as detection algorithm used, fraud type investigated, and success
rate have been covered. Issues and challenges associated with the current
practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and
Privacy in Communication Networks (SecureComm 2014
Results of the Search for Strange Quark Matter and Q-balls with the SLIM Experiment
The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive
to nuclearites and Q-balls, which could be present in the cosmic radiation as
possible Dark Matter components. It was sensitive also to strangelets, i.e.
small lumps of Strange Quark Matter predicted at such altitudes by various
phenomenological models. The analysis of 427 m^2 of Nuclear Track Detectors
exposed for 4.22 years showed no candidate event. New upper limits on the flux
of downgoing nuclearites and Q-balls at the 90% C.L. were established. The null
result also restricts models for strangelets propagation through the Earth
atmosphere.Comment: 14 pages, 11 EPS figure
The influence of the physical education teacher on intrinsic motivation, self-confidence, anxiety, and pre-and post-competition mood states
One of the fundamental problems facing teachers of physical education (PE) is how to increase pupils' motivation. From the point of view of goal achievement, guidelines need to be established so that information may be used to greater effect in classes. This study examined the relationship between the motivational climate created by the PE teacher and the intrinsic motivation of the preparatory sessions together with self-confidence and anxiety prior to competition and pre- and post-competition mood states. The sample was made up of school children (M age = 11.7) from a state school (N = 115), who, after an introduction to an athletics course of 12 sessions, took part in a sports competition. During this time, a teacher (trained to this effect) manipulated the motivational climate, adapting the strategies of TARGET (11, 12, 26, 28). The mastery climate was linked to enjoyment, perceived ability, and effort in the PE classes, as well as to pre-competition somatic anxiety and post-competition vigor. On the other hand, the performance climate was associated with self-confidence, pre-competition vigor, and post-competition stress. The results are discussed in relation to achievement goal theory and motivational climate manipulation
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
- …
