2,593 research outputs found

    Nonperturbative Vertices in Supersymmetric Quantum Electrodynamics

    Get PDF
    We derive the complete set of supersymmetric Ward identities involving only two- and three- point proper vertices in supersymmetric QED. We also present the most general form of the proper vertices consistent with both the supersymmetric and U(1) gauge Ward identities. These vertices are the supersymmetric equivalent of the non supersymmetric Ball-Chiu vertices.Comment: seventeen pages late

    Running coupling and fermion mass in strong coupling QED

    Full text link
    Simple toy model is used in order to exhibit the technique of extracting the non-perturbative information about Green's functions in Minkowski space. The effective charge and the dynamical electron mass are calculated in strong coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron and photon propagators. The minimal Ball-Chiu vertex was used for simplicity and we impose the Landau gauge fixing on QED action. The solution obtained separately in Euclidean and Minkowski space were compared, the latter one was extracted with the help of spectral technique.Comment: 23 pages, 4 figures, v4: revised and extended version, one introductory section adde

    Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED

    Get PDF
    In this paper we study dynamical chiral symmetry breaking in dimensionally regularized quenched QED within the context of Dyson-Schwinger equations. In D < 4 dimensions the theory has solutions which exhibit chiral symmetry breaking for all values of the coupling. To begin with, we study this phenomenon both numerically and, with some approximations, analytically within the rainbow approximation in the Landau gauge. In particular, we discuss how to extract the critical coupling alpha_c = pi/3 relevant in four dimensions from the D dimensional theory. We further present analytic results for the chirally symmetric solution obtained with the Curtis-Pennington vertex as well as numerical results for solutions exhibiting chiral symmetry breaking. For these we demonstrate that, using dimensional regularization, the extraction of the critical coupling relevant for this vertex is feasible. Initial results for this critical coupling are in agreement with cut-off based work within the currently achievable numerical precision.Comment: 24 pages, including 5 figures; submitted to Phys. Rev.

    Mean field exponents and small quark masses

    Full text link
    We demonstrate that the restoration of chiral symmetry at finite-T in a class of confining Dyson-Schwinger equation (DSE) models of QCD is a mean field transition, and that an accurate determination of the critical exponents using the chiral and thermal susceptibilities requires very small values of the current-quark mass: log_{10}(m/m_u) < -5. Other classes of DSE models characterised by qualitatively different interactions also exhibit a mean field transition. Incipient in this observation is the suggestion that mean field exponents are a result of the gap equation's fermion substructure and not of the interaction.Comment: 13 pages, 3 figures, REVTEX, epsfi

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    Dynamical chiral symmetry breaking and confinement with an infrared-vanishing gluon propagator?

    Full text link
    We study a model Dyson-Schwinger equation for the quark propagator closed using an {\it Ansatz} for the gluon propagator of the form \mbox{D(q)q2/[(q2)2+b4]D(q) \sim q^2/[(q^2)^2 + b^4]} and two {\it Ans\"{a}tze} for the quark-gluon vertex: the minimal Ball-Chiu and the modified form suggested by Curtis and Pennington. Using the quark condensate as an order parameter, we find that there is a critical value of b=bcb=b_c such that the model does not support dynamical chiral symmetry breaking for b>bcb>b_c. We discuss and apply a confinement test which suggests that, for all values of bb, the quark propagator in the model {\bf is not} confining. Together these results suggest that this Ansatz for the gluon propagator is inadequate as a model since it does not yield the expected behaviour of QCD.Comment: 21 Pages including 4 PostScript figures uuencoded at the end of the file. Replacement: slight changes of wording and emphasis. ADP-93-215/T133, ANL-PHY-7599-TH-93, FSU-SCRI-93-108, REVTEX 3.

    Heavy- to light-meson transition form factors

    Get PDF
    Semileptonic heavy -> heavy and heavy -> light meson transitions are studied as a phenomenological application of a heavy-quark limit of Dyson-Schwinger equations. Employing two parameters: E, the difference between the mass of the heavy meson and the effective-mass of the heavy quark; and Lambda, the width of the heavy-meson Bethe-Salpeter amplitude, we calculate f_+(t) for all decays on their entire kinematically accessible t-domain. Our study favours f_B in the range 0.135-0.17 GeV and with E=0.44 GeV and 1/Lambda = 0.14 fm we obtain f_+^{B pi}(0) = 0.46. As a result of neglecting 1/m_c-corrections, we estimate that our calculated values of \rho^2 = 0.87 and f_+^{DK}(0)=0.62 are too low by approximately 15%. However, the bulk of these corrections should cancel in our calculated values of Br(D -> \pi l nu)/Br(D -> K l nu)=0.13 and f_+^{D pi}(0)/f_+^{DK}(0) = 1.16.Comment: 26 pages, 3 figures, REVTE

    HIV Serostatus and Tumor Differentiation Among Patients with Cervical Cancer at Bugando Medical Centre.

    Get PDF
    Evidence for the association between Human immunodeficiency virus infection and cervical cancer has been contrasting, with some studies reporting increased risk of cervical cancer among HIV positive women while others report no association. Similar evidence from Tanzania is scarce as HIV seroprevalence among cervical cancer patients has not been rigorously evaluated. The purpose of this study was to determine the association between HIV and tumor differentiation among patients with cervical cancer at Bugando Medical Centre and Teaching Hospital in Mwanza, North-Western Tanzania. This was a descriptive analytical study involving suspected cervical cancer patients seen at the gynaecology outpatient clinic and in the gynaecological ward from November 2010 to March 2011. A total of 91 suspected cervical cancer patients were seen during the study period and 74 patients were histologically confirmed with cervical cancer. The mean age of those confirmed of cervical cancer was 50.5 ± 12.5 years. Most patients (39 of the total 74-52.7%) were in early disease stages (stages IA-IIA). HIV infection was diagnosed in 22 (29.7%) patients. On average, HIV positive women with early cervical cancer disease had significantly more CD4+ cells than those with advanced disease (385.8 ± 170.4 95% CI 354.8-516.7 and 266.2 ± 87.5, 95% CI 213.3-319.0 respectively p = 0.042). In a binary logistic regression model, factors associated with HIV seropositivity were ever use of hormonal contraception (OR 5.79 95% CI 1.99-16.83 p = 0.001), aged over 50 years (OR 0.09 95% CI 0.02-0.36 p = 0.001), previous history of STI (OR 3.43 95% CI 1.10-10.80 p = 0.035) and multiple sexual partners OR 5.56 95% CI 1.18-26.25 p = 0.030). Of these factors, only ever use of hormonal contraception was associated with tumor cell differentiation (OR 0.16 95% CI 0.06-0.49 p = 0.001). HIV seropositivity was weakly associated with tumor cell differentiation in an unadjusted analysis (OR 0.21 95% CI 0.04-1.02 p = 0.053), but strong evidence for the association was found after adjusting for ever use of hormonal contraception with approximately six times more likelihood of HIV infection among women with poorly differentiated tumor cells compared to those with moderately and well differentiated cells (OR 5.62 95% CI 1.76-17.94 p = 0.004).\ud Results from this study setting suggest that HIV is common among cervical cancer patients and that HIV seropositivity may be associated with poor tumour differentiation. Larger studies in this and similar settings with high HIV prevalence and high burden of cervical cancer are required to document this relationship
    corecore