2,593 research outputs found
Nonperturbative Vertices in Supersymmetric Quantum Electrodynamics
We derive the complete set of supersymmetric Ward identities involving only
two- and three- point proper vertices in supersymmetric QED. We also present
the most general form of the proper vertices consistent with both the
supersymmetric and U(1) gauge Ward identities. These vertices are the
supersymmetric equivalent of the non supersymmetric Ball-Chiu vertices.Comment: seventeen pages late
Running coupling and fermion mass in strong coupling QED
Simple toy model is used in order to exhibit the technique of extracting the
non-perturbative information about Green's functions in Minkowski space. The
effective charge and the dynamical electron mass are calculated in strong
coupling 3+1 QED by solving the coupled Dyson-Schwinger equations for electron
and photon propagators. The minimal Ball-Chiu vertex was used for simplicity
and we impose the Landau gauge fixing on QED action. The solution obtained
separately in Euclidean and Minkowski space were compared, the latter one was
extracted with the help of spectral technique.Comment: 23 pages, 4 figures, v4: revised and extended version, one
introductory section adde
Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED
In this paper we study dynamical chiral symmetry breaking in dimensionally
regularized quenched QED within the context of Dyson-Schwinger equations. In D
< 4 dimensions the theory has solutions which exhibit chiral symmetry breaking
for all values of the coupling. To begin with, we study this phenomenon both
numerically and, with some approximations, analytically within the rainbow
approximation in the Landau gauge. In particular, we discuss how to extract the
critical coupling alpha_c = pi/3 relevant in four dimensions from the D
dimensional theory. We further present analytic results for the chirally
symmetric solution obtained with the Curtis-Pennington vertex as well as
numerical results for solutions exhibiting chiral symmetry breaking. For these
we demonstrate that, using dimensional regularization, the extraction of the
critical coupling relevant for this vertex is feasible. Initial results for
this critical coupling are in agreement with cut-off based work within the
currently achievable numerical precision.Comment: 24 pages, including 5 figures; submitted to Phys. Rev.
Mean field exponents and small quark masses
We demonstrate that the restoration of chiral symmetry at finite-T in a class
of confining Dyson-Schwinger equation (DSE) models of QCD is a mean field
transition, and that an accurate determination of the critical exponents using
the chiral and thermal susceptibilities requires very small values of the
current-quark mass: log_{10}(m/m_u) < -5. Other classes of DSE models
characterised by qualitatively different interactions also exhibit a mean field
transition. Incipient in this observation is the suggestion that mean field
exponents are a result of the gap equation's fermion substructure and not of
the interaction.Comment: 13 pages, 3 figures, REVTEX, epsfi
Recommended from our members
Energetic and Environmental Constraints on the Community Structure of Benthic Microbial Mats in Lake Fryxell, Antarctica.
Ecological communities are regulated by the flow of energy through environments. Energy flow is typically limited by access to photosynthetically active radiation (PAR) and oxygen concentration (O2). The microbial mats growing on the bottom of Lake Fryxell, Antarctica, have well-defined environmental gradients in PAR and (O2). We analyzed the metagenomes of layers from these microbial mats to test the extent to which access to oxygen and light controls community structure. We found variation in the diversity and relative abundances of Archaea, Bacteria and Eukaryotes across three (O2) and PAR conditions: high (O2) and maximum PAR, variable (O2) with lower maximum PAR, and low (O2) and maximum PAR. We found distinct communities structured by the optimization of energy use on a millimeter-scale across these conditions. In mat layers where (O2) was saturated, PAR structured the community. In contrast, (O2) positively correlated with diversity and affected the distribution of dominant populations across the three habitats, suggesting that meter-scale diversity is structured by energy availability. Microbial communities changed across covarying gradients of PAR and (O2). The comprehensive metagenomic analysis suggests that the benthic microbial communities in Lake Fryxell are structured by energy flow across both meter- and millimeter-scales
Multiplicative renormalizability and quark propagator
The renormalized Dyson-Schwinger equation for the quark propagator is
studied, in Landau gauge, in a novel truncation which preserves multiplicative
renormalizability. The renormalization constants are formally eliminated from
the integral equations, and the running coupling explicitly enters the kernels
of the new equations. To construct a truncation which preserves multiplicative
renormalizability, and reproduces the correct leading order perturbative
behavior, non-trivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is
introduced, with infrared fixed point in agreement with previous
Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail.
Dynamical chiral symmetry breaking is investigated, and the generated quark
mass is of the order of the extension of the infrared plateau of the coupling,
and about three times larger than in the Abelian approximation, which violates
multiplicative renormalizability. The generated scale is of the right size for
hadronic phenomenology, without requiring an infrared enhancement of the
running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added;
accepted for publication in Phys. Rev.
Dynamical chiral symmetry breaking and confinement with an infrared-vanishing gluon propagator?
We study a model Dyson-Schwinger equation for the quark propagator closed
using an {\it Ansatz} for the gluon propagator of the form \mbox{} and two {\it Ans\"{a}tze} for the quark-gluon vertex: the
minimal Ball-Chiu and the modified form suggested by Curtis and Pennington.
Using the quark condensate as an order parameter, we find that there is a
critical value of such that the model does not support dynamical chiral
symmetry breaking for . We discuss and apply a confinement test which
suggests that, for all values of , the quark propagator in the model {\bf is
not} confining. Together these results suggest that this Ansatz for the gluon
propagator is inadequate as a model since it does not yield the expected
behaviour of QCD.Comment: 21 Pages including 4 PostScript figures uuencoded at the end of the
file. Replacement: slight changes of wording and emphasis. ADP-93-215/T133,
ANL-PHY-7599-TH-93, FSU-SCRI-93-108, REVTEX 3.
Changes in Advance Care Planning in Nursing Homes Before and After the Patient Self‐Determination Act: Report of a 10‐State Survey
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111179/1/j.1532-5415.1997.tb02963.x.pd
Heavy- to light-meson transition form factors
Semileptonic heavy -> heavy and heavy -> light meson transitions are studied
as a phenomenological application of a heavy-quark limit of Dyson-Schwinger
equations. Employing two parameters: E, the difference between the mass of the
heavy meson and the effective-mass of the heavy quark; and Lambda, the width of
the heavy-meson Bethe-Salpeter amplitude, we calculate f_+(t) for all decays on
their entire kinematically accessible t-domain. Our study favours f_B in the
range 0.135-0.17 GeV and with E=0.44 GeV and 1/Lambda = 0.14 fm we obtain
f_+^{B pi}(0) = 0.46. As a result of neglecting 1/m_c-corrections, we estimate
that our calculated values of \rho^2 = 0.87 and f_+^{DK}(0)=0.62 are too low by
approximately 15%. However, the bulk of these corrections should cancel in our
calculated values of Br(D -> \pi l nu)/Br(D -> K l nu)=0.13 and f_+^{D
pi}(0)/f_+^{DK}(0) = 1.16.Comment: 26 pages, 3 figures, REVTE
HIV Serostatus and Tumor Differentiation Among Patients with Cervical Cancer at Bugando Medical Centre.
Evidence for the association between Human immunodeficiency virus infection and cervical cancer has been contrasting, with some studies reporting increased risk of cervical cancer among HIV positive women while others report no association. Similar evidence from Tanzania is scarce as HIV seroprevalence among cervical cancer patients has not been rigorously evaluated. The purpose of this study was to determine the association between HIV and tumor differentiation among patients with cervical cancer at Bugando Medical Centre and Teaching Hospital in Mwanza, North-Western Tanzania. This was a descriptive analytical study involving suspected cervical cancer patients seen at the gynaecology outpatient clinic and in the gynaecological ward from November 2010 to March 2011. A total of 91 suspected cervical cancer patients were seen during the study period and 74 patients were histologically confirmed with cervical cancer. The mean age of those confirmed of cervical cancer was 50.5 ± 12.5 years. Most patients (39 of the total 74-52.7%) were in early disease stages (stages IA-IIA). HIV infection was diagnosed in 22 (29.7%) patients. On average, HIV positive women with early cervical cancer disease had significantly more CD4+ cells than those with advanced disease (385.8 ± 170.4 95% CI 354.8-516.7 and 266.2 ± 87.5, 95% CI 213.3-319.0 respectively p = 0.042). In a binary logistic regression model, factors associated with HIV seropositivity were ever use of hormonal contraception (OR 5.79 95% CI 1.99-16.83 p = 0.001), aged over 50 years (OR 0.09 95% CI 0.02-0.36 p = 0.001), previous history of STI (OR 3.43 95% CI 1.10-10.80 p = 0.035) and multiple sexual partners OR 5.56 95% CI 1.18-26.25 p = 0.030). Of these factors, only ever use of hormonal contraception was associated with tumor cell differentiation (OR 0.16 95% CI 0.06-0.49 p = 0.001). HIV seropositivity was weakly associated with tumor cell differentiation in an unadjusted analysis (OR 0.21 95% CI 0.04-1.02 p = 0.053), but strong evidence for the association was found after adjusting for ever use of hormonal contraception with approximately six times more likelihood of HIV infection among women with poorly differentiated tumor cells compared to those with moderately and well differentiated cells (OR 5.62 95% CI 1.76-17.94 p = 0.004).\ud
Results from this study setting suggest that HIV is common among cervical cancer patients and that HIV seropositivity may be associated with poor tumour differentiation. Larger studies in this and similar settings with high HIV prevalence and high burden of cervical cancer are required to document this relationship
- …
