2,176 research outputs found

    Exploring modality switching effects in negated sentences: further evidence for grounded representations

    Get PDF
    Theories of embodied cognition (e.g., Perceptual Symbol Systems Theory; Barsalou, 1999, 2009) suggest that modality specific simulations underlie the representation of concepts. Supporting evidence comes from modality switch costs: participants are slower to verify a property in one modality (e.g., auditory, BLENDER-loud) after verifying a property in a different modality (e.g., gustatory, CRANBERRIES-tart) compared to the same modality (e.g., LEAVES-rustling, Pecher et al., 2003). Similarly, modality switching costs lead to a modulation of the N400 effect in event-related potentials (ERPs; Collins et al., 2011; Hald et al., 2011). This effect of modality switching has also been shown to interact with the veracity of the sentence (Hald et al., 2011). The current ERP study further explores the role of modality match/mismatch on the processing of veracity as well as negation (sentences containing “not”). Our results indicate a modulation in the ERP based on modality and veracity, plus an interaction. The evidence supports the idea that modality specific simulations occur during language processing, and furthermore suggest that these simulations alter the processing of negation

    Effects of shade and predation on survival and growth of larval gray treefrogs (hyla versicolor) [abstract]

    Get PDF
    Abstract only availableAmphibians are experiencing population reductions and species extinctions on a worldwide scale and most biologists agree that loss or degradation of local habitats is the major factor causing declines. As part of the larger Land-use Effects on Amphibian Populations (LEAP) project, we examined some of the effects of timber harvest on the pond environment of larval gray treefrogs (Hyla versicolor). We manipulated shade and predator levels (dragonfly larvae; family Libellulidae) in cattle tanks to test the impact of clear-cutting on the tadpole populations. Survival and size of the metamorphosed frogs differed in response to shade and predation level, but larval period was unaffected. The percent survival in low shade treatments was 71.0% compared to 65.7% for high shade treatments and average mass at metamorphosis was 0.3347 g compared to 0.2960 g. This greater growth was supported by previous research and suggests open canopy ponds have more periphyton which tadpoles utilize as food. In the predator treatments, ponds that had no dragonfly larvae had a greater percent survival than the high predator density ponds (81.2% and 61.8%), however, the average mass of the zero and high predator treatments were similar and smaller than masses in the low and medium treatments. The smaller size at metamorphosis in the high predator treatments can be attributed to reduced feeding activity in order to avoid predators. The higher survival rate from the lack of predation in low treatments resulted in greater tadpole density and less resources available resulting in smaller average mass at metamorphosis. These results imply that clear-cutting does not negatively impact amphibian populations because the tadpoles seemed to thrive from the benefits of open canopy ponds. However, this is the only the first stage in their life history and would probably differ in canopy preference as the frogs mature and begin to use trees for refugia.McNair Scholars Progra

    The Potential For UK Portfolio Investors To Finance Sustainable Tropical Forestry

    Get PDF
    Environmental Economics and Policy, Resource /Energy Economics and Policy,

    Assessment of Gravity Wave Momentum Flux Measurement Capabilities by Meteor Radars Having Different Transmitter Power and Antenna Configurations

    Get PDF
    Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 deg S) and on King George Island in the Antarctic (62.1 deg S) and conventional meteor radars at Socorro, New Mexico (34.1 deg N, 106.9 deg W), Bear Lake Observatory, Utah (approx 41.9 deg N, 111.4 deg W), and Yellowknife, Canada (62.5 deg N, 114.3 deg W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide qualitative estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of approx 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields

    Topological constraints on spiral wave dynamics in spherical geometries with inhomogeneous excitability

    Full text link
    We analyze the way topological constraints and inhomogeneity in the excitability influence the dynamics of spiral waves on spheres and punctured spheres of excitable media. We generalize the definition of an index such that it characterizes not only each spiral but also each hole in punctured, oriented, compact, two-dimensional differentiable manifolds and show that the sum of the indices is conserved and zero. We also show that heterogeneity and geometry are responsible for the formation of various spiral wave attractors, in particular, pairs of spirals in which one spiral acts as a source and a second as a sink -- the latter similar to an antispiral. The results provide a basis for the analysis of the propagation of waves in heterogeneous excitable media in physical and biological systems.Comment: 5 pages, 6 Figures, major revisions, accepted for publication in Phys. Rev.

    Particle size segregation in granular flow in silos

    Get PDF
    Segregation and layering of alumina in storage silos are investigated, with a view to predicting output quality versus time, given known variations in input quality on emplacement. A variety of experiments were conducted, existing relevant publications were reviewed, and the basis for an algorithm for predicting the effect of withdrawing from a central flowing region, in combination with variations in quality due to geometric, layering and segregation effects, is described in this report

    Disjoining Potential and Spreading of Thin Liquid Layers in the Diffuse Interface Model Coupled to Hydrodynamics

    Full text link
    The hydrodynamic phase field model is applied to the problem of film spreading on a solid surface. The disjoining potential, responsible for modification of the fluid properties near a three-phase contact line, is computed from the solvability conditions of the density field equation with appropriate boundary conditions imposed on the solid support. The equation describing the motion of a spreading film are derived in the lubrication approximation. In the case of quasi-equilibrium spreading, is shown that the correct sharp-interface limit is obtained, and sample solutions are obtained by numerical integration. It is further shown that evaporation or condensation may strongly affect the dynamics near the contact line, and accounting for kinetic retardation of the interphase transport is necessary to build up a consistent theory.Comment: 14 pages, 5 figures, to appear in PR

    Hydrodynamic theory of de-wetting

    Full text link
    A prototypical problem in the study of wetting phenomena is that of a solid plunging into or being withdrawn from a liquid bath. In the latter, de-wetting case, a critical speed exists above which a stationary contact line is no longer sustainable and a liquid film is being deposited on the solid. Demonstrating this behavior to be a hydrodynamic instability close to the contact line, we provide the first theoretical explanation of a classical prediction due to Derjaguin and Levi: instability occurs when the outer, static meniscus approaches the shape corresponding to a perfectly wetting fluid
    corecore