4,946 research outputs found
Bias-Free Shear Estimation using Artificial Neural Networks
Bias due to imperfect shear calibration is the biggest obstacle when
constraints on cosmological parameters are to be extracted from large area weak
lensing surveys such as Pan-STARRS-3pi, DES or future satellite missions like
Euclid. We demonstrate that bias present in existing shear measurement
pipelines (e.g. KSB) can be almost entirely removed by means of neural
networks. In this way, bias correction can depend on the properties of the
individual galaxy instead on being a single global value. We present a
procedure to train neural networks for shear estimation and apply this to
subsets of simulated GREAT08 RealNoise data. We also show that circularization
of the PSF before measuring the shear reduces the scatter related to the PSF
anisotropy correction and thus leads to improved measurements, particularly on
low and medium signal-to-noise data. Our results are competitive with the best
performers in the GREAT08 competition, especially for the medium and higher
signal-to-noise sets. Expressed in terms of the quality parameter defined by
GREAT08 we achieve a Q = 40, 140 and 1300 without and 50, 200 and 1300 with
circularization for low, medium and high signal-to-noise data sets,
respectively.Comment: 19 pages, 8 figures; accepted for publication in Ap
Constraints on Omega_m and sigma_8 from weak lensing in RCS fields
We have analysed 53 square degrees of imaging data from the Red-Sequence
Cluster Survey (RCS), and measured the excess correlations in the shapes of
galaxies on scales out to ~1.5 degrees. We separate the signal into an ``E''-
(lensing) and ``B''-mode (systematics), which allows us to study residual
systematics. On scales larger than 10 arcminutes, we find no ``B''-mode. On
smaller scales we find a small, but significant ``B''-mode. This signal is also
present when we select a sample of bright galaxies. These galaxies are rather
insensitive to observational distortions, and we therefore conclude that the
oberved ``B''-mode is likely to be caused by intrinsic alignments. We therefore
limit the cosmic shear analysis to galaxies with 22<R_C<24. We derive joint
constraints on Omega_m and sigma_8, by marginalizing over Gamma, Omega_Lambda
and the source redshift distribution, using different priors. We obtain a
conservative constraint of
(95% confidence). A better constraint is derived when we use Gaussian priors
redshift distribution. For this choice of priors, we find
(95% confidence). Using our
setof Gaussian priors, we find that we can place a lower bound on Gamma:
Gamma>0.1+0.16\Omega_m$ (95% confidence). Comparison of the RCS results with
three other recent cosmic shear measurements shows excellent agreement. The
current weak lensing results are also in good agreement with CMB measurements,
when we allow the reionization optical depth tau and the spectral index n_s to
vary. We present a simple demonstration of how the weak lensing results can be
used as a prior in the parameter estimation from CMB measurements to derive
constraints on the reionization optical depth tau. (abridged)Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical
Journa
Bivariate stochastic modeling of functional response with natural mortality
A correction due to Abbott (1925) is the standard method of dealing with control mortality in insect bioassay to estimate the mortality of an insect conditional on control mortality not having occurred. In this article a bivariate stochastic process for overall mortality is developed in which natural mortality and predation are jointly modeled to take account of the competing-risks associated with prey loss. The total mortality estimate from this model is essentially identical with that from more classical modeling. However, when predation loss is estimated in the absence of control mortality the results are somewhat different, with the estimate from the bivariate model being lower than that from using Abbott’s formula in conjunction with the classical model. It is argued that overdispersion in observed mortality data corresponds to correlated outcomes (death or survival) for the prey initially present, while Abbott’s correction relies implicitly on independence
KIC 9406652: An Unusual Cataclysmic Variable in the Kepler Field of View
KIC 9406652 is a remarkable variable star in the Kepler field of view that
shows both very rapid oscillations and long term outbursts in its light curve.
We present an analysis of the light curve over quarters 1 to 15 and new
spectroscopy that indicates that the object is a cataclysmic variable with an
orbital period of 6.108 hours. However, an even stronger signal appears in the
light curve periodogram for a shorter period of 5.753 hours, and we argue that
this corresponds to the modulation of flux from the hot spot region in a
tilted, precessing disk surrounding the white dwarf star. We present a
preliminary orbital solution from radial velocity measurements of features from
the accretion disk and the photosphere of the companion. We use a Doppler
tomography algorithm to reconstruct the disk and companion spectra, and we also
consider how these components contribute to the object's spectral energy
distribution from ultraviolet to infrared wavelengths. This target offers us a
remarkable opportunity to investigate disk processes during the high mass
transfer stage of evolution in cataclysmic variables.Comment: 31 pages, 13 figures, accepted for Ap
Electrostatic trapping of metastable NH molecules
We report on the Stark deceleration and electrostatic trapping of NH
() radicals. In the trap, the molecules are excited on the
spin-forbidden transition and detected via
their subsequent fluorescence to the ground state. The 1/e
trapping time is 1.4 0.1 s, from which a lower limit of 2.7 s for the
radiative lifetime of the state is deduced. The spectral
profile of the molecules in the trapping field is measured to probe their
spatial distribution. Electrostatic trapping of metastable NH followed by
optical pumping of the trapped molecules to the electronic ground state is an
important step towards accumulation of these radicals in a magnetic trap.Comment: replaced with final version, added journal referenc
Short-wavelength out-of-band EUV emission from Sn laser-produced plasma
We present the results of spectroscopic measurements in the extreme
ultraviolet (EUV) regime (7-17 nm) of molten tin microdroplets illuminated by a
high-intensity 3-J, 60-ns Nd:YAG laser pulse. The strong 13.5 nm emission from
this laser-produced plasma is of relevance for next-generation nanolithography
machines. Here, we focus on the shorter wavelength features between 7 and 12 nm
which have so far remained poorly investigated despite their diagnostic
relevance. Using flexible atomic code calculations and local thermodynamic
equilibrium arguments, we show that the line features in this region of the
spectrum can be explained by transitions from high-lying configurations within
the Sn-Sn ions. The dominant transitions for all ions but
Sn are found to be electric-dipole transitions towards the =4 ground
state from the core-excited configuration in which a 4 electron is promoted
to the 5 sub-shell. Our results resolve some long-standing spectroscopic
issues and provide reliable charge state identification for Sn laser-produced
plasma, which could be employed as a useful tool for diagnostic purposes.Comment: 11 pages, 4 figure
The Living Application: a Self-Organising System for Complex Grid Tasks
We present the living application, a method to autonomously manage
applications on the grid. During its execution on the grid, the living
application makes choices on the resources to use in order to complete its
tasks. These choices can be based on the internal state, or on autonomously
acquired knowledge from external sensors. By giving limited user capabilities
to a living application, the living application is able to port itself from one
resource topology to another. The application performs these actions at
run-time without depending on users or external workflow tools. We demonstrate
this new concept in a special case of a living application: the living
simulation. Today, many simulations require a wide range of numerical solvers
and run most efficiently if specialized nodes are matched to the solvers. The
idea of the living simulation is that it decides itself which grid machines to
use based on the numerical solver currently in use. In this paper we apply the
living simulation to modelling the collision between two galaxies in a test
setup with two specialized computers. This simulation switces at run-time
between a GPU-enabled computer in the Netherlands and a GRAPE-enabled machine
that resides in the United States, using an oct-tree N-body code whenever it
runs in the Netherlands and a direct N-body solver in the United States.Comment: 26 pages, 3 figures, accepted by IJHPC
Characterization and transfection properties of lipoplexes stabilized with novel exchangeable polyethylene glycol-lipid conjugates
The positive charge of cationic-lipid/DNA complexes (lipoplexes) renders them highly susceptible to interactions with the biological milieu, leading to aggregation and destabilization, and rapid clearance from the blood circulation. In this study we synthesized and characterized a set of novel amphiphiles, based on N-methyl-4-alkylpyridinium chlorides (SAINTs), to which a PEG moiety is coupled. Plasmids were fully protected in lipoplexes prepared from cationic SAINT-2 lipid and stabilized with SAINT PEGs. Our results demonstrate that SAINT-PEG stabilization is transient, and permits DNA to be released from these lipoplexes. The rate of SAINT PEG transfer from lipoplexes to acceptor liposomes was determined by the nature of the lipid anchor. Increased hydrophobicity, by lengthening the alkyl chain, resulted in a decrease of the rate of DNA release from the lipoplexes. Chain unsaturation had the opposite effect. Similarly, the in vitro transfection potency of lipoplexes containing PEG-SAINT derivatives was sensitive to the length and (un)saturation of the alkyl chain. However, the internalization of SAINT PEG stabilized lipoplexes is determined by their charge, rather than by the concentration of the polymer conjugate. Lipoplexes targeted to cell-surface epithelial glycoprotein 2, by means of a covalently coupled monoclonal antibody, were specifically internalized by cells expressing this antigen. (C) 2003 Elsevier B.V. All rights reserved
Measuring the Reduced Shear
Neglecting the second order corrections in weak lensing measurements can lead
to a few percent uncertainties on cosmic shears, and becomes more important for
cluster lensing mass reconstructions. Existing methods which claim to measure
the reduced shears are not necessarily accurate to the second order when a
point spread function (PSF) is present. We show that the method of Zhang (2008)
exactly measures the reduced shears at the second order level in the presence
of PSF. A simple theorem is provided for further confirming our calculation,
and for judging the accuracy of any shear measurement method at the second
order based on its properties at the first order. The method of Zhang (2008) is
well defined mathematically. It does not require assumptions on the
morphologies of galaxies and the PSF. To reach a sub-percent level accuracy,
the CCD pixel size is required to be not larger than 1/3 of the Full Width at
Half Maximum (FWHM) of the PSF. Using a large ensemble (> 10^7) of mock
galaxies of unrestricted morphologies, we find that contaminations to the shear
signals from the noise of background photons can be removed in a well defined
way because they are not correlated with the source shapes. The residual shear
measurement errors due to background noise are consistent with zero at the
sub-percent level even when the amplitude of such noise reaches about 1/10 of
the source flux within the half-light radius of the source. This limit can in
principle be extended further with a larger galaxy ensemble in our simulations.
On the other hand, the source Poisson noise remains to be a cause of systematic
errors. For a sub-percent level accuracy, our method requires the amplitude of
the source Poisson noise to be less than 1/80 ~ 1/100 of the source flux within
the half-light radius of the source, corresponding to collecting roughly 10^4
source photons.Comment: 18 pages, 3 figures, 4 tables, minor changes from the previous
versio
- …
