5,901 research outputs found

    High Performance P3M N-body code: CUBEP3M

    Full text link
    This paper presents CUBEP3M, a publicly-available high performance cosmological N-body code and describes many utilities and extensions that have been added to the standard package. These include a memory-light runtime SO halo finder, a non-Gaussian initial conditions generator, and a system of unique particle identification. CUBEP3M is fast, its accuracy is tuneable to optimize speed or memory, and has been run on more than 27,000 cores, achieving within a factor of two of ideal weak scaling even at this problem size. The code can be run in an extra-lean mode where the peak memory imprint for large runs is as low as 37 bytes per particles, which is almost two times leaner than other widely used N-body codes. However, load imbalances can increase this requirement by a factor of two, such that fast configurations with all the utilities enabled and load imbalances factored in require between 70 and 120 bytes per particles. CUBEP3M is well designed to study large scales cosmological systems, where imbalances are not too large and adaptive time-stepping not essential. It has already been used for a broad number of science applications that require either large samples of non-linear realizations or very large dark matter N-body simulations, including cosmological reionization, halo formation, baryonic acoustic oscillations, weak lensing or non-Gaussian statistics. We discuss the structure, the accuracy, known systematic effects and the scaling performance of the code and its utilities, when applicable.Comment: 20 pages, 17 figures, added halo profiles, updated to match MNRAS accepted versio

    A field study from the Oderbruch, Germany

    Get PDF
    The behavior of organophosphates and ethers during riverbank filtration and groundwater flow was assessed to determine their suitability as organic tracers. Four sampling campaigns were conducted at the Oderbruch polder, Germany to establish the presence of chlorinated flame retardants (TCEP, TCPP, TDCP), non-chlorinated plasticizers (TBEP, TiBP, TnBP), and hydrophilic ethers (1,4-dioxane, monoglyme, diglyme, triglyme, tetraglyme) in the Oder River, main drainage ditch, and anoxic aquifer. Selected parameters were measured in order to determine the hydro-chemical composition of both, river water and groundwater. The results of the study confirm that organophosphates (OPs) are more readily attenuated during bank filtration compared to ethers. Both in the river and the groundwater, TCPP was the most abundant OP with concentrations in the main drainage ditch ranging between 105 and 958 ng L−1. 1,4-dioxane, triglyme, and tetraglyme demonstrated persistent behavior during bank filtration and in the anoxic groundwater. In the drainage ditch concentrations of 1,4-dioxane, triglyme, and tetraglyme ranged between 1090 and 1467 ng L− 1, 37 and 149 ng L− 1, and 496 and 1403 ng L− 1, respectively. A positive correlation was found for the inorganic tracer chloride with 1,4-dioxane and tetraglyme. These results confirm the possible application of these ethers as environmental organic tracers. Both inorganic and organic compounds showed temporal variability in the surface- and groundwater. Discharge of the river water, concentrations of analytes at the time of infiltration and attenuation were identified as factors influencing the variable amounts of the analytes in the surface and groundwater. These findings are also of great importance for the production of drinking water via bank filtration and natural and artificial groundwater recharge as the physicochemical properties of ethers create challenges in their removal

    Microwave Lens for Polar Molecules

    Get PDF
    We here report on the implementation of a microwave lens for neutral polar molecules suitable to focus molecules both in low-field-seeking and in high-field-seeking states. By using the TE_11m modes of a 12 cm long cylindrically symmetric microwave resonator, Stark-decelerated ammonia molecules are transversally confined. We investigate the focusing properties of this microwave lens as a function of the molecules' velocity, the detuning of the microwave frequency from the molecular resonance frequency, and the microwave power. Such a microwave lens can be seen as a first important step towards further microwave devices, such as decelerators and traps.Comment: 4 pages, 3 figure
    corecore