3,930 research outputs found

    Holomorphic selection rules, the origin of the mu term, and thermal inflation

    Get PDF
    When an abelian gauge theory with integer charges is spontaneously broken by the expectation value of a charge Q field, there remains a Z_Q discrete symmetry. In a supersymmetric theory, holomorphy adds additional constraints on the operators that can appear in the effective superpotential. As a result, operators with the same mass dimension but opposite sign charges can have very different coupling strengths. In the present work we characterize the operator hierarchies in the effective theory due to holomorphy, and show that there exist simple relationships between the size of an operator and its mass dimension and charge. Using such holomorphy-induced operator hierarchies, we construct a simple model with a naturally small supersymmetric mu term. This model also provides a concrete realization of late-time thermal inflation, which has the ability to solve the gravitino and moduli problems of weak-scale supersymmetry.Comment: 18 pages, 1 figur

    Enhanced Production of Neutron-Rich Rare Isotopes in Peripheral Collisions at Fermi Energies

    Get PDF
    A large enhancement in the production of neutron-rich projectile residues is observed in the reactions of a 25 MeV/nucleon 86Kr beam with the neutron rich 124Sn and 64Ni targets relative to the predictions of the EPAX parametrization of high-energy fragmentation, as well as relative to the reaction with the less neutron-rich 112Sn target. The data demonstrate the significant effect of the target neutron-to-proton ratio (N/Z) in peripheral collisions at Fermi energies. A hybrid model based on a deep-inelastic transfer code (DIT) followed by a statistical de-excitation code appears to account for part of the observed large cross sections. The DIT simulation indicates that the production of the neutron-rich nuclides in these reactions is associated with peripheral nucleon exchange. In such peripheral encounters, the neutron skins of the neutron-rich 124Sn and 64Ni target nuclei may play an important role. From a practical viewpoint, such reactions between massive neutron-rich nuclei offer a novel and attractive synthetic avenue to access extremely neutron-rich rare isotopes towards the neutron-drip line.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Cosmic Strings from Supersymmetric Flat Directions

    Get PDF
    Flat directions are a generic feature of the scalar potential in supersymmetric gauge field theories. They can arise, for example, from D-terms associated with an extra abelian gauge symmetry. Even when supersymmetry is broken softly, there often remain directions in the scalar field space along which the potential is almost flat. Upon breaking a gauge symmetry along one of these almost flat directions, cosmic strings may form. Relative to the standard cosmic string picture based on the abelian Higgs model, these flat-direction cosmic strings have the extreme Type-I properties of a thin gauge core surrounded by a much wider scalar field profile. We perform a comprehensive study of the microscopic, macroscopic, and observational characteristics of this class of strings. We find many differences from the standard string scenario, including stable higher winding mode strings, the dynamical formation of higher mode strings from lower ones, and a resultant multi-tension scaling string network in the early universe. These strings are only moderately constrained by current observations, and their gravitational wave signatures may be detectable at future gravity wave detectors. Furthermore, there is the interesting but speculative prospect that the decays of cosmic string loops in the early universe could be a source of ultra-high energy cosmic rays or non-thermal dark matter. We also compare the observational signatures of flat-direction cosmic strings with those of ordinary cosmic strings as well as (p,q) cosmic strings motivated by superstring theory.Comment: 58 pages, 16 figures, v2. accepted to PRD, added comments about baryogenesis and boosted decay products from cusp annihilatio

    Higgs Boson Decays to Neutralinos in Low-Scale Gauge Mediation

    Full text link
    We study the decays of a standard model-like MSSM Higgs boson to pairs of neutralinos, each of which subsequently decays promptly to a photon and a gravitino. Such decays can arise in supersymmetric scenarios where supersymmetry breaking is mediated to us by gauge interactions with a relatively light gauge messenger sector (M_{mess} < 100 TeV). This process gives rise to a collider signal consisting of a pair of photons and missing energy. In the present work we investigate the bounds on this scenario within the minimal supersymmetric standard model from existing collider data. We also study the prospects for discovering the Higgs boson through this decay mode with upcoming data from the Tevatron and the LHC.Comment: 18 pages, 5 figures, added references and discussion of neutralino couplings, same as journal versio

    An ultra-bright atom laser

    Full text link
    We present a novel, ultra-bright atom-laser and ultra-cold thermal atom beam. Using rf-radiation we strongly couple the magnetic hyperfine levels of 87Rb atoms in a magnetically trapped Bose-Einstein condensate. At low rf-frequencies gravity opens a small hole in the trapping potenital and a well collimated, extremely bright atom laser emerges from just below the condensate. As opposed to traditional atom lasers based on weak coupling, this technique allows us to outcouple atoms at an arbitrarily large rate. We demonstrate an increase in flux per atom in the BEC by a factor of sixteen compared to the brightest quasi-continuous atom laser. Furthermore, we produce by two orders of magnitude the coldest thermal atom beam to date (200 nK).Comment: 20 pages, 9 figures, supplementary material online at http://www.bec.g

    The Supersymmetric Origin of Matter

    Full text link
    The Minimal Supersymmetric extension of the Standard Model (MSSM) can provide the correct neutralino relic abundance and baryon number asymmetry of the universe. Both may be efficiently generated in the presence of CP violating phases, light charginos and neutralinos, and a light top squark. Due to the coannihilation of the neutralino with the light stop, we find a large region of parameter space in which the neutralino relic density is consistent with WMAP and SDSS data. We perform a detailed study of the additional constraints induced when CP violating phases, consistent with the ones required for baryogenesis, are included. We explore the possible tests of this scenario from present and future electron Electric Dipole Moment (EDM) measurements, direct neutralino detection experiments, collider searches and the b -> s gamma decay rate. We find that the EDM constraints are quite severe and that electron EDM experiments, together with stop searches at the Tevatron and Higgs searches at the LHC, will provide a definite test of our scenario of electroweak baryogenesis in the next few years.Comment: 30 pages, 14 figure

    Crack Front Waves and the dynamics of a rapidly moving crack

    Full text link
    Crack front waves are localized waves that propagate along the leading edge of a crack. They are generated by the interaction of a crack with a localized material inhomogeneity. We show that front waves are nonlinear entities that transport energy, generate surface structure and lead to localized velocity fluctuations. Their existence locally imparts inertia, which is not incorporated in current theories of fracture, to initially "massless" cracks. This, coupled to crack instabilities, yields both inhomogeneity and scaling behavior within fracture surface structure.Comment: Embedded Latex file including 4 figure
    corecore