7,994 research outputs found

    Exploratory wind tunnel tests of a shock-swallowing air data sensor at a Mach number of approximately 1.83

    Get PDF
    The test probe was designed to measure free-stream Mach number and could be incorporated into a conventional airspeed nose boom installation. Tests were conducted in the Langley 4-by 4-foot supersonic pressure tunnel with an approximate angle of attack test range of -5 deg to 15 deg and an approximate angle of sideslip test range of + or - 4 deg. The probe incorporated a variable exit area which permitted internal flow. The internal flow caused the bow shock to be swallowed. Mach number was determined with a small axially movable internal total pressure tube and a series of fixed internal static pressure orifices. Mach number error was at a minimum when the total pressure tube was close to the probe tip. For four of the five tips tested, the Mach number error derived by averaging two static pressures measured at horizontally opposed positions near the probe entrance were least sensitive to angle of attack changes. The same orifices were also used to derive parameters that gave indications of flow direction

    MAESTRO, CASTRO, and SEDONA -- Petascale Codes for Astrophysical Applications

    Full text link
    Performing high-resolution, high-fidelity, three-dimensional simulations of Type Ia supernovae (SNe Ia) requires not only algorithms that accurately represent the correct physics, but also codes that effectively harness the resources of the most powerful supercomputers. We are developing a suite of codes that provide the capability to perform end-to-end simulations of SNe Ia, from the early convective phase leading up to ignition to the explosion phase in which deflagration/detonation waves explode the star to the computation of the light curves resulting from the explosion. In this paper we discuss these codes with an emphasis on the techniques needed to scale them to petascale architectures. We also demonstrate our ability to map data from a low Mach number formulation to a compressible solver.Comment: submitted to the Proceedings of the SciDAC 2010 meetin

    Near-infrared observations of type Ia supernovae: The best known standard candle for cosmology

    Get PDF
    We present an analysis of the Hubble diagram for 12 Type Ia supernovae (SNe Ia) observed in the near-infrared J and H bands. We select SNe exclusively from the redshift range 0.03 < z < 0.09 to reduce uncertainties coming from peculiar velocities while remaining in a cosmologically well-understood region. All of the SNe in our sample exhibit no spectral or B-band light-curve peculiarities and lie in the B-band stretch range of 0.8-1.15. Our results suggest that SNe Ia observed in the near-infrared (NIR) are the best known standard candles. We fit previously determined NIR light-curve templates to new high-precision data to derive peak magnitudes and to determine the scatter about the Hubble line. Photometry of the 12 SNe is presented in the natural system. Using a standard cosmology of (H_0, Omega_m, Lambda) = (70,0.27,0.73) we find a median J-band absolute magnitude of M_J = -18.39 with a scatter of 0.116 and a median H-band absolute magnitude of M_H = -18.36 with a scatter of 0.085. The scatter in the H band is the smallest yet measured. We search for correlations between residuals in the J- and H-band Hubble diagrams and SN properties, such as SN colour, B-band stretch and the projected distance from host-galaxy centre. The only significant correlation is between the J-band Hubble residual and the J-H pseudo-colour. We also examine how the scatter changes when fewer points in the near-infrared are used to constrain the light curve. With a single point in the H band taken anywhere from 10 days before to 15 days after B-band maximum light and a prior on the date of H-band maximum set from the date of B-band maximum, we find that we can measure distances to an accuracy of 6%. The precision of SNe Ia in the NIR provides new opportunities for precision measurements of both the expansion history of the universe and peculiar velocities of nearby galaxies.Comment: 6 pages, 2 figures. Accepted for publication in MNRA

    Analysis of the Flux and Polarization Spectra of the Type Ia Supernova SN 2001el: Exploring the Geometry of the High-velocity Ejecta

    Full text link
    SN 2001el is the first normal Type Ia supernova to show a strong, intrinsic polarization signal. In addition, during the epochs prior to maximum light, the CaII IR triplet absorption is seen distinctly and separately at both normal photospheric velocities and at very high velocities. The high-velocity triplet absorption is highly polarized, with a different polarization angle than the rest of the spectrum. The unique observation allows us to construct a relatively detailed picture of the layered geometrical structure of the supernova ejecta: in our interpretation, the ejecta layers near the photosphere (v \approx 10,000 km/s) obey a near axial symmetry, while a detached, high-velocity structure (v \approx 18,000-25,000 km/s) with high CaII line opacity deviates from the photospheric axisymmetry. By partially obscuring the underlying photosphere, the high-velocity structure causes a more incomplete cancellation of the polarization of the photospheric light, and so gives rise to the polarization peak and rotated polarization angle of the high-velocity IR triplet feature. In an effort to constrain the ejecta geometry, we develop a technique for calculating 3-D synthetic polarization spectra and use it to generate polarization profiles for several parameterized configurations. In particular, we examine the case where the inner ejecta layers are ellipsoidal and the outer, high-velocity structure is one of four possibilities: a spherical shell, an ellipsoidal shell, a clumped shell, or a toroid. The synthetic spectra rule out the spherical shell model, disfavor a toroid, and find a best fit with the clumped shell. We show further that different geometries can be more clearly discriminated if observations are obtained from several different lines of sight.Comment: 14 pages (emulateapj5) plus 18 figures, accepted by The Astrophysical Journa

    An outburst from a massive star 40 days before a supernova explosion

    Get PDF
    Various lines of evidence suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as a supernova. Interestingly, several models predict such pre-explosion outbursts. Establishing a causal connection between these mass-loss episodes and the final supernova explosion will provide a novel way to study pre-supernova massive-star evolution. Here we report on observations of a remarkable mass-loss event detected 40 days prior to the explosion of the Type IIn supernova SN 2010mc (PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6x10^47 erg of energy, and releasing about 0.01 Solar mass at typical velocities of 2000 km/s. We show that the temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model and disfavor alternative suggestions.Comment: Nature 494, 65, including supplementary informatio

    The Rise Times of High and Low Redshift Type Ia Supernovae are Consistent

    Get PDF
    We present a self-consistent comparison of the rise times for low- and high-redshift Type Ia supernovae. Following previous studies, the early light curve is modeled using a t-squared law, which is then mated with a modified Leibundgut template light curve. The best-fit t-squared law is determined for ensemble samples of low- and high-redshift supernovae by fitting simultaneously for all light curve parameters for all supernovae in each sample. Our method fully accounts for the non-negligible covariance amongst the light curve fitting parameters, which previous analyses have neglected. Contrary to Riess et al. (1999), we find fair to good agreement between the rise times of the low- and high-redshift Type Ia supernovae. The uncertainty in the rise time of the high-redshift Type Ia supernovae is presently quite large (roughly +/- 1.2 days statistical), making any search for evidence of evolution based on a comparison of rise times premature. Furthermore, systematic effects on rise time determinations from the high-redshift observations, due to the form of the late-time light curve and the manner in which the light curves of these supernovae were sampled, can bias the high-redshift rise time determinations by up to +3.6/-1.9 days under extreme situations. The peak brightnesses - used for cosmology - do not suffer any significant bias, nor any significant increase in uncertainty.Comment: 18 pages, 4 figures, Accepted for publication in the Astronomical Journal. Also available at http://www.lbl.gov/~nugent/papers.html Typos were corrected and a few sentences were added for improved clarit

    The peculiar extinction law of SN2014J measured with The Hubble Space Telescope

    Get PDF
    The wavelength-dependence of the extinction of Type Ia SN2014J in the nearby galaxy M82 has been measured using UV to near-IR photometry obtained with the Hubble Space Telescope, the Nordic Optical Telescope, and the Mount Abu Infrared Telescope. This is the first time that the reddening of a SN Ia is characterized over the full wavelength range of 0.20.2-22 microns. A total-to-selective extinction, RV3.1R_V\geq3.1, is ruled out with high significance. The best fit at maximum using a Galactic type extinction law yields RV=1.4±0.1R_V = 1.4\pm0.1. The observed reddening of SN2014J is also compatible with a power-law extinction, Aλ/AV=(λ/λV)pA_{\lambda}/A_V = \left( {\lambda}/ {\lambda_V} \right)^{p} as expected from multiple scattering of light, with p=2.1±0.1p=-2.1\pm0.1. After correction for differences in reddening, SN2014J appears to be very similar to SN2011fe over the 14 broad-band filter light curves used in our study.Comment: Accepted for publication in ApJ

    Diversity of Decline-Rate-Corrected Type Ia Supernova Rise Times: One Mode or Two?

    Get PDF
    B-band light-curve rise times for eight unusually well-observed nearby Type Ia supernovae (SNe) are fitted by a newly developed template-building algorithm, using light-curve functions that are smooth, flexible, and free of potential bias from externally derived templates and other prior assumptions. From the available literature, photometric BVRI data collected over many months, including the earliest points, are reconciled, combined, and fitted to a unique time of explosion for each SN. On average, after they are corrected for light-curve decline rate, three SNe rise in 18.81 +- 0.36 days, while five SNe rise in 16.64 +- 0.21 days. If all eight SNe are sampled from a single parent population (a hypothesis not favored by statistical tests), the rms intrinsic scatter of the decline-rate-corrected SN rise time is 0.96 +0.52 -0.25 days -- a first measurement of this dispersion. The corresponding global mean rise time is 17.44 +- 0.39 days, where the uncertainty is dominated by intrinsic variance. This value is ~2 days shorter than two published averages that nominally are twice as precise, though also based on small samples. When comparing high-z to low-z SN luminosities for determining cosmological parameters, bias can be introduced by use of a light-curve template with an unrealistic rise time. If the period over which light curves are sampled depends on z in a manner typical of current search and measurement strategies, a two-day discrepancy in template rise time can bias the luminosity comparison by ~0.03 magnitudes.Comment: As accepted by The Astrophysical Journal; 15 pages, 6 figures, 2 tables. Explanatory material rearranged and enhanced; Fig. 4 reformatte

    Cosmology with X-ray Cluster Baryons

    Get PDF
    X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g. Chandra X-ray Observatory, XMM-Newton) and next generation (e.g. Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1% and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)^{0.03}.Comment: 6 pages, 5 figures; v2: 13 pages, substantial elaboration and reordering, matches JCAP versio
    corecore