4,074 research outputs found

    Field induced magnetic order in the frustrated magnet Gadolinium Gallium Garnet

    Full text link
    Gd3Ga5O12, (GGG), has an extraordinary magnetic phase diagram, where no long range order is found down to 25 mK despite \Theta_CW \approx 2 K. However, long range order is induced by an applied field of around 1 T. Motivated by recent theoretical developments and the experimental results for a closely related hyperkagome system, we have performed neutron diffraction measurements on a single crystal sample of GGG in an applied magnetic field. The measurements reveal that the H-T phase diagram of GGG is much more complicated than previously assumed. The application of an external field at low T results in an intensity change for most of the magnetic peaks which can be divided into three distinct sets: ferromagnetic, commensurate antiferromagnetic, and incommensurate antiferromagnetic. The ferromagnetic peaks (e.g. (112), (440) and (220)) have intensities that increase with the field and saturate at high field. The antiferromagnetic reflections have intensities that grow in low fields, reach a maximum at an intermediate field (apart from the (002) peak which shows two local maxima) and then decrease and disappear above 2 T. These AFM peaks appear, disappear and reach maxima in different fields. We conclude that the competition between magnetic interactions and alternative ground states prevents GGG from ordering in zero field. It is, however, on the verge of ordering and an applied magnetic field can be used to crystallise ordered components. The range of ferromagnetic and antiferromagnetic propagation vectors found reflects the complex frustration in GGG.Comment: 6 pages, 7 figures, HFM 2008 conference pape

    Electron mobility in surface- and buried- channel flatband In<sub>0.53</sub>Ga<sub>0.47</sub>As MOSFETs with ALD Al<sub>2</sub>O<sub>3</sub> gate dielectric.

    Get PDF
    In this paper, we investigate the scaling potential of flatband III-V MOSFETs by comparing the mobility of surface and buried In&lt;sub&gt;0.53&lt;/sub&gt;Ga&lt;sub&gt;0.47&lt;/sub&gt;As channel devices employing an Atomic Layer Deposited (ALD) Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; gate dielectric and a delta-doped InGaAs/InAlAs/InP heterostructure. Peak electron mobilities of 4300 cm&lt;sup&gt;2&lt;/sup&gt;/V·s and 6600 cm&lt;sup&gt;2&lt;/sup&gt;/V·s at a carrier density of 3×1012 cm&lt;sup&gt;-2&lt;/sup&gt; for the surface and buried channel structures respectively were determined. In contrast to similarly scaled inversion-channel devices, we find that mobility in surface channel flatband structures does not drop rapidly with electron density, but rather high mobility is maintained up to carrier concentrations around 4x10&lt;sup&gt;12&lt;/sup&gt; cm&lt;sup&gt;-2&lt;/sup&gt; before slowly dropping to around 2000 cm&lt;sup&gt;2&lt;/sup&gt;/V·s at 1x10M&lt;sup&gt;13&lt;/sup&gt; cm&lt;sup&gt;-2&lt;/sup&gt;. We believe these to be world leading metrics for this material system and an important development in informing the III-V MOSFET device architecture selection process for future low power, highly scaled CM

    Reflectivity Anisotropy Spectra of Cu- and Ag- (110) surfaces from {\it ab initio} theory

    Full text link
    We are able to disentagle the effects of the intraband and interband parts of the bulk dielectric function on the bare dielectric anisotropy of the surface. We show how the position, sign and amplitude of the structures observed in such spectra depend on the above quantities. The lineshape of all the calculated structures agree very well with the ones observed experimentally for samples treated by suitable surface cleaning. In particular, we reproduce the observed single peak structure of Ag at high energy, found to represent a state of the clean surface different from the one giving the originally observed double peak structure. This results is not reproduced by the 'local field' model.Comment: 4 pages, 3 figures. submitted to Phys. Rev. Let

    Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra

    Full text link
    Using Kohn-Sham wave functions and their energy levels obtained by density-functional-theory total-energy calculations, the electronic structure of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable hollow-site structure formed when adsorption takes place at low temperature, and the stable substitutional structure appearing when the substrate is heated thereafter above ca. 180K or when adsorption takes place at room temperature from the beginning. The experimentally obtained two-dimensional band structures of the surface states or resonances are well reproduced by the calculations. With the help of charge density maps it is found that in both phases, two pronounced bands appear as the result of a characteristic coupling between the valence-state band of a free c(2x2)-Na monolayer and the surface-state/resonance band of the Al surfaces; that is, the clean (001) surface for the metastable phase and the unstable, reconstructed "vacancy" structure for the stable phase. The higher-lying band, being Na-derived, remains metallic for the unstable phase, whereas it lies completely above the Fermi level for the stable phase, leading to the formation of a surface-state/resonance band-structure resembling the bulk band-structure of an ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Narrow-band anisotropic electronic structure of ReS2

    Get PDF
    We have used angle resolved photoemission spectroscopy to investigate the band structure of ReS2, a transition-metal dichalcogenide semiconductor with a distorted 1T crystal structure. We find a large number of narrow valence bands, which we attribute to the combined influence of the structural distortion and spin-orbit coupling. We further image how this leads to a strong in-plane anisotropy of the electronic structure, with quasi-one-dimensional bands reflecting predominant hopping along zig-zag Re chains. We find that this does not persist up to the top of the valence band, where a more three-dimensional character is recovered with the fundamental band gap located away from the Brillouin zone centre along kz. These experiments are in good agreement with our density-functional theory calculations, shedding new light on the bulk electronic structure of ReS2, and how it can be expected to evolve when thinned to a single layer.PostprintPeer reviewe

    Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance

    Full text link
    The recoil proton polarization has been measured in the p (\vec e,e'\vec p) pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2 and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz Microtron. Due to the spin precession in a magnetic spectrometer, all three proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y = (-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR = (-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework of the Mainz Unitary Isobar Model. The consistency among the reduced polarizations and the extraction of the ratio of longitudinal to transverse response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure

    Oxygen Moment Formation and Canting in Li2CuO2

    Full text link
    The possibilities of oxygen moment formation and canting in the quasi-1D cuprate Li2CuO2 are investigated using single crystal neutron diffraction at 2 K. The observed magnetic intensities could not be explained without the inclusion of a large ordered oxygen moment of 0.11(1) Bohr magnetons. Least-squares refinement of the magnetic structure of Li2CuO2 in combination with a spin-density Patterson analysis shows that the magnetization densities of the Cu and O atoms are highly aspherical, forming quasi-1D ribbons of localised Cu and O moments. Magnetic structure refinements and low-field magnetization measurements both suggest that the magnetic structure of Li2CuO2 at 2 K may be canted. A possible model for the canted configuration is proposed.Comment: 10 pages, 8 figures (screen resolution

    Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run

    Get PDF
    Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc

    Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory

    Full text link
    The deuteron elastic structure function A(Q^2) has been extracted in the Q^2 range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamicsComment: Submitted to Physical Review Letter
    corecore