12,142 research outputs found

    The social side of Homo economicus

    Full text link
    Many recent experiments in the field of behavioural economics appear to demonstrate a willingness of humans to behave altruistically, even when it is not in their interest to do so. This has led to the assertion that humans have evolved a special predisposition towards altruism. Recent studies have questioned this, and demonstrated that selfless cooperation does not hold up in controlled experiments. As I discuss here, this calls for more economic 'field experiments' and highlights the need for greater integration of the evolutionary and economic sciences

    Four Stokes parameter radio frequency polarimetry of a flare from AD Leonis

    Get PDF
    Observations of the four Stokes parameters of a 430 MHz flare from the UV Ceti-type star AD Leonis are presented. The maximum amplitude of the event was 0.52 flux units and the durations at one-half and one-tenth maximum were 12 and 40 seconds, respectively. The degree of circular polarization at maximum intensity was approximately 56 percent and was later observed to be as high as 92 percent. Linear polarization was also observed at a level of about 21 percent at flare maximum which allowed an upper limit of 440 radians - sq m to be placed on the rotation measure

    Revised Pulsar Spindown

    Full text link
    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-Pdot diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n < 3, by allowing the corotating part of the magnetosphere to end inside the light cylinder. We discuss the role of magnetic reconnection in determining the pulsar braking index. We show, however, that n ~ 3 remains a good approximation for the pulsar population as a whole. Moreover, we predict that pulsars near the death line have braking index values n > 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.Comment: 8 pages, 7 figures; accepted to Ap

    Atrial cellular electrophysiological changes in patients with ventricular dysfunction may predispose to AF

    Get PDF
    &lt;b&gt;Background:&lt;/b&gt; Left ventricular systolic dysfunction (LVSD) is a risk factor for atrial fibrillation (AF), but the atrial cellular electrophysiological mechanisms in humans are unclear. Objective This study sought to investigate whether LVSD in patients who are in sinus rhythm (SR) is associated with atrial cellular electrophysiological changes that could predispose to AF. &lt;b&gt;Methods:&lt;/b&gt; Right atrial myocytes were obtained from 214 consenting patients in SR who were undergoing cardiac surgery. Action potentials or ion currents were measured using the whole-cell-patch clamp technique. &lt;b&gt;Results:&lt;/b&gt; The presence of moderate or severe LVSD was associated with a shortened atrial cellular effective refractory period (ERP) (209 ± 8 ms; 52 cells, 18 patients vs 233 ± 7 ms; 134 cells, 49 patients; P &#60;0.05); confirmed by multiple linear regression analysis. The left ventricular ejection fraction (LVEF) was markedly lower in patients with moderate or severe LVSD (36% ± 4%, n = 15) than in those without LVSD (62% ± 2%, n = 31; P &#60;0.05). In cells from patients with LVEF ≤ 45%, the ERP and action potential duration at 90% repolarization were shorter than in those from patients with LVEF &#62; 45%, by 24% and 18%, respectively. The LVEF and ERP were positively correlated (r = 0.65, P &#60;0.05). The L-type calcium ion current, inward rectifier potassium ion current, and sustained outward ion current were unaffected by LVSD. The transient outward potassium ion current was decreased by 34%, with a positive shift in its activation voltage, and no change in its decay kinetics. &lt;b&gt;Conclusion:&lt;/b&gt; LVSD in patients in SR is independently associated with a shortening of the atrial cellular ERP, which may be expected to contribute to a predisposition to AF

    Spark Model for Pulsar Radiation Modulation Patterns

    Get PDF
    A non-stationary polar gap model first proposed by Ruderman & Sutherland (1975) is modified and applied to spark-associated pulsar emission at radio wave-lengths. It is argued that under physical and geometrical conditions prevailing above pulsar polar cap, highly non-stationary spark discharges do not occur at random positions. Instead, sparks should tend to operate in well determined preferred regions. At any instant the polar cap is populated as densely as possible with a number of two-dimensional sparks with a characteristic dimension as well as a typical distance between adjacent sparks being about the polar gap height. Our model differs, however, markedly from its original 'hollow cone' version. The key feature is the quasi-central spark driven by pair production process and anchored to the local pole of a sunspot-like surface magnetic field. This fixed spark prevents the motion of other sparks towards the pole, restricting it to slow circumferential drift across the planes of field lines converging at the local pole. We argue that the polar spark constitutes the core pulsar emission, and that the annular rings of drifting sparks contribute to conal components of the pulsar beam. We found that the number of nested cones in the beam of typical pulsar should not excced three; a number also found by Mitra & Deshpande (1999) using a completely different analysis.Comment: 31 pages, 8 figures, accepted by Ap

    An RG potential for the quantum Hall effects

    Full text link
    The phenomenological analysis of fully spin-polarized quantum Hall systems, based on holomorphic modular symmetries of the renormalization group (RG) flow, is generalized to more complicated situations where the spin or other "flavors" of charge carriers are relevant, and where the symmetry is different. We make the simplest possible ansatz for a family of RG potentials that can interpolate between these symmetries. It is parametrized by a single number aa and we show that this suffices to account for almost all scaling data obtained to date. The potential is always symmetric under the main congruence group at level two, and when aa takes certain values this symmetry is enhanced to one of the maximal subgroups of the modular group. We compute the covariant RG β\beta-function, which is a holomorphic vector field derived from the potential, and compare the geometry of this gradient flow with available temperature driven scaling data. The value of aa is determined from experiment by finding the location of a quantum critical point, i.e., an unstable zero of the β\beta-function given by a saddle point of the RG potential. The data are consistent with aRa \in \mathbb{R}, which together with the symmetry leads to a generalized semi-circle law.Comment: 10 figures, sligthly updated discussion and refs, accepted for PR

    Is pulsar B0656+14 a very nearby RRAT source?

    Get PDF
    The recently discovered RRAT sources are characterized by very bright radio bursts which, while being periodically related, occur infrequently. We find bursts with the same characteristics for the known pulsar B0656+14. These bursts represent pulses from the bright end of an extended smooth pulse-energy distribution and are shown to be unlike giant pulses, giant micropulses or the pulses of normal pulsars. The extreme peak-fluxes of the brightest of these pulses indicates that PSR B0656+14, were it not so near, could only have been discovered as an RRAT source. Longer observations of the RRATs may reveal that they, like PSR B0656+14, emit weaker emission in addition to the bursts.Comment: 4 pages, 4 figures, accepted by ApJ

    Polarization observations of nine southern millisecond pulsars

    Full text link
    Mean pulse profiles and polarization properties are presented for nine southern pulsars. The observations were made using the Parkes radio telescope at frequencies near 1330 MHz; three of the nine pulsars were also observed at 660 MHz. A very high degree of circular polarization was observed in PSR J1603-7202. Complex position angle variations which are not well described by the rotating-vector model were observed in PSRs J2124-3358 and J2145-0750, both of which have very wide profiles. Rotation measures were obtained for all nine pulsars, with two implying relatively strong interstellar magnetic fields.Comment: 24 pages, 11 figs, accepted by Ap

    A deep campaign to characterize the synchronous radio/X-ray mode switching of PSR B0943+10

    Get PDF
    We report on simultaneous X-ray and radio observations of the mode-switching pulsar PSR B0943+10 obtained with the XMM-Newton satellite and the LOFAR, LWA and Arecibo radio telescopes in November 2014. We confirm the synchronous X-ray/radio switching between a radio-bright (B) and a radio-quiet (Q) mode, in which the X-ray flux is a factor ~2.4 higher than in the B-mode. We discovered X-ray pulsations, with pulsed fraction of 38+/-5% (0.5-2 keV), during the B-mode, and confirm their presence in Q-mode, where the pulsed fraction increases with energy from ~20% up to ~65% at 2 keV. We found marginal evidence for an increase in the X-ray pulsed fraction during B-mode on a timescale of hours. The Q-mode X-ray spectrum requires a fit with a two-component model (either a power-law plus blackbody or the sum of two blackbodies), while the B-mode spectrum is well fit by a single blackbody (a single power-law is rejected). With a maximum likelihood analysis, we found that in Q-mode the pulsed emission has a thermal blackbody spectrum with temperature ~3.4x10^6 K and the unpulsed emission is a power-law with photon index ~2.5, while during B-mode both the pulsed and unpulsed emission can be fit by either a blackbody or a power law with similar values of temperature and photon index. A Chandra image shows no evidence for diffuse X-ray emission. These results support a scenario in which both unpulsed non-thermal emission, likely of magnetospheric origin, and pulsed thermal emission from a small polar cap (~1500 m^2) with a strong non-dipolar magnetic field (~10^{14} G), are present during both radio modes and vary in intensity in a correlated way. This is broadly consistent with the predictions of the partially screened gap model and does not necessarily imply global magnetospheric rearrangements to explain the mode switching.Comment: To be published on The Astrophysical Journa
    corecore