1,104 research outputs found
Improving the system capacity of broadband services using multiple high-altitude platforms
A method of significantly improving the capacity of high-altitude platform (HAP) communications networks operating in the millimeter-wave bands is presented. It is shown how constellations of HAPs can share a common frequency allocation by exploiting the directionality of the user antenna. The system capacity of such constellations is critically affected by the minimum angular separation of the HAPs and the sidelobe level of the user antenna. For typical antenna beamwidths of approximately 5/spl deg/ an inter-HAP spacing of 4 km is sufficient to deliver optimum performance. The aggregate bandwidth efficiency is evaluated, both theoretically using the Shannon equation, and using practical modulation and coding schemes, for multiple HAP configurations delivering either single or multiple cells. For the user antenna beamwidths used, it is shown that capacity increases are commensurate with the increase in the number of platforms, up to 10 HAPs. For increases beyond this the choice of constellation strategy becomes increasingly important
Optimizing an array of antennas for cellular coverage from a high altitude platform
In a wireless communications network served by a high altitude platform (HAP) the cochannel interference is a function of the antenna beamwidth, angular separation and. sidelobe level. At the millimeter wave frequencies proposed for HAPs, an array of aperture type antennas on the platform is a practicable solution for serving the cells. We present a method for predicting cochannel interference based on curve-fit approximations for radiation patterns of elliptic beams which illuminate cell edges with optimum power, and a means of estimating optimum beamwidths for each cell of a regular hexagonal layout. The method is then applied to a 121 cell architecture. Where sidelobes are modeled As a flat floor at 40-dB below peak directivity, a cell cluster size of four yields carrier-to-interference ratios (CIRs), which vary from 15 dB at cell edges to 27 dB at cell centers. On adopting a cluster size of seven, these figures increase, respectively, to 19 and 30 dB. On reducing the sidelobe level, the. improvement in CIR can be quantified. The method also readily allows for regions of overlapping channel coverage to be shown
High resolution miniature dilatometer based on AFM piezocantilever
Thermal expansion, or dilation, is closely related to the specific heat, and
provides useful information regarding material properties. The accurate
measurement of dilation in confined spaces coupled with other limiting
experimental environments such as low temperatures and rapidly changing high
magnetic fields requires a new sensitive millimeter size dilatometer that has
little or no temperature and field dependence. We have designed an ultra
compact dilatometer using an atomic force microscope (AFM) piezoresistive
cantilever as the sensing element and demonstrated its versatility by studying
the charge density waves (CDWs) in alpha uranium to high magnetic fields (up to
31 T). The performance of this piezoresistive dilatometer was comparable to
that of a titanium capacitive dilatometer.Comment: 9 pages, 3 figures, submitted to Review of Scientific Instrument
Recommended from our members
Topological analysis of the vasculature of angiopoietin-expressing tumours through scale-space tracing
This work describes the topological analysis of the vasculature of tumours. The analysis is performed with a scale-space technique, which traces the centrelines of vessels as topological ridges of the image intensities and then obtains a series of measurements, which are used to compare the vasculatures. Besides the measurements directly associated with the centrelines, the scales obtained allow the estimation of width andthusareacoveredwithvessels. Tumours of SW1222 human colorectal carcinoma xenografts were observed when growing in dorsal skin-fold window chambers in mice. Three variants of the tumours expressing either endogenous levels of angiopoietins (WT) or over-expressing either angiopoietin-1 (Ang-1) or angiopoietin-2 (Ang-2) were assessed with/without vascular targeted therapy. The scale-space technique was able to discriminate between the vasculatures of the three different tumour types prior to treatment. Results also suggested that over-expression of Ang-2 was associated with susceptibility of the tumour vasculature to the vascular disrupting agent, combretastatin A4 phosphate (CA4P). Substantiation of this finding would point to the potential of tumour Ang-2 expression as a predictive bio-marker for response to CA4P
Photoelectron spectra of aluminum cluster anions: Temperature effects and ab initio simulations
Photoelectron (PES) spectra from aluminum cluster anions (from 12 to 15
atoms) at various temperature regimes, were studied using ab-initio molecular
dynamics simulations and experimentally. The calculated PES spectra, obtained
via shifting of the simulated electronic densities of states by the
self-consistently determined values of the asymptotic exchange-correlation
potential, agree well with the measured ones, allowing reliable structural
assignments and theoretical estimation of the clusters' temperatures.Comment: RevTex, 3 gif figures. Scheduled for Oct 15, 1999, issue of Phys.
Rev. B as Rapid Communicatio
Unusual metamagnetism in CeIrIn
We report a high field investigation (up to 45 T) of the metamagnetic
transition in CeIrIn with resistivity and de-Haas-van-Alphen (dHvA) effect
measurements in the temperature range 0.03-1 K. As the magnetic field is
increased the resistivity increases, reaches a maximum at the metamagnetic
critical field, and falls precipitously for fields just above the transition,
while the amplitude of all measurable dHvA frequencies are significantly
attenuated near the metamagnetic critical field. However, the dHvA frequencies
and cyclotron masses are not substantially altered by the transition. In the
low field state, the resistivity is observed to increase toward low
temperatures in a singular fashion, a behavior that is rapidly suppressed above
the transition. Instead, in the high field state, the resistivity monotonically
increases with temperature with a dependence that is more singular than the
iconic Fermi-liquid, temperature-squared, behavior. Both the damping of the
dHvA amplitudes and the increased resistivity near the metamagnetic critical
field indicate an increased scattering rate for charge carriers consistent with
critical fluctuation scattering in proximity to a phase transition. The dHvA
amplitudes do not uniformly recover above the critical field, with some
hole-like orbits being entirely suppressed at high fields. These changes, taken
as a whole, suggest that the metamagnetic transition in CeIrIn is
associated with the polarization and localization of the heaviest of
quasiparticles on the hole-like Fermi surface.Comment: 29 pages, 9 figure
Electronic structure of strained InP/GaInP quantum dots
We calculate the electronic structure of nm scale InP islands embedded in
. The calculations are done in the envelope approximation
and include the effects of strain, piezoelectric polarization, and mixing among
6 valence bands. The electrons are confined within the entire island, while the
holes are confined to strain induced pockets. One pocket forms a ring at the
bottom of the island near the substrate interface, while the other is above the
island in the GaInP. The two sets of hole states are decoupled. Polarization
dependent dipole matrix elements are calculated for both types of hole states.Comment: Typographical error corrected in strain Hamiltonia
Fermi Surface of Alpha-Uranium at Ambient Pressure
We have performed de Haas-van Alphen measurements of the Fermi surface of
alpha-uranium single crystals at ambient pressure within the alpha-3 charge
density wave (CDW) state from 0.020 K - 10 K and magnetic fields to 35 T using
torque magnetometry. The angular dependence of the resulting frequencies is
described. Effective masses were measured and the Dingle temperature was
determined to be 0.74 K +/- 0.04 K. The observation of quantum oscillations
within the alpha-3 CDW state gives new insight into the effect of the charge
density waves on the Fermi surface. In addition we observed no signature of
superconductivity in either transport or magnetization down to 0.020 K
indicating the possibility of a pressure-induced quantum critical point that
separates the superconducting dome from the normal CDW phase.Comment: 11 pages, 4 figures, 3 table
A versatile and compact capacitive dilatometer
We describe the design, construction, calibration, and operation of a
relatively simple differential capacitive dilatometer suitable for measurements
of thermal expansion and magnetostriction from 300 K to below 1 K with a
low-temperature resolution of about 0.05 angstroms. The design is characterized
by an open architecture permitting measurements on small samples with a variety
of shapes. Dilatometers of this design have operated successfully with a
commercial physical property measurement system, with several types of
cryogenic refrigeration systems, in vacuum, in helium exchange gas, and while
immersed in liquid helium (magnetostriction only) to temperatures of 30 mK and
in magnetic fields to 45 T.Comment: 8 pages, incorporating 6 figures, submitted to Rev. Sci. Instru
Pressure Evolution of a Field Induced Fermi Surface Reconstruction and of the Neel Critical Field in CeIn3
We report high-pressure skin depth measurements on the heavy fermion material
CeIn3 in magnetic fields up to 64 T using a self-resonant tank circuit based on
a tunnel diode oscillator. At ambient pressure, an anomaly in the skin depth is
seen at 45 T. The field where this anomaly occurs decreases with applied
pressure until approximately 1.0 GPa, where it begins to increase before
merging with the antiferromagnetic phase boundary. Possible origins for this
transport anomaly are explored in terms of a Fermi surface reconstruction. The
critical magnetic field at which the Neel ordered phase is suppressed is also
mapped as a function of pressure and extrapolates to the previous ambient
pressure measurements at high magnetic fields and high pressure measurements at
zero magnetic field.Comment: 15 pages, 5 figure
- …
