968 research outputs found
Intrinsic Decoherence in Mesoscopic Systems
We present measurements of the phase coherence time in six
quasi-1D Au wires and clearly show that is temperature independent
at low temperatures. We suggest that zero-point fluctuations of the intrinsic
electromagnetic environment are responsible for the observed saturation of
. We introduce a new functional form for the temperature dependence
and present the results of a calculation for the saturation value of
. This explains the observed temperature dependence of our samples
as well as many 1D and 2D systems reported to date.Comment: 4 pages, 4 figures & 1 tabl
Growth of carbon nanotubes on quasicrystalline alloys
We report on the synthesis of carbon nanotubes on quasicrystalline alloys.
Aligned multiwalled carbon nanotubes (MWNTs) on the conducting faces of
decagonal quasicrystals were synthesized using floating catalyst chemical vapor
deposition. The alignment of the nanotubes was found perpendicular to the
decagonal faces of the quasicrystals. A comparison between the growth and tube
quality has also been made between tubes grown on various quasicrystalline and
SiO2 substrates. While a significant MWNT growth was observed on decagonal
quasicrystalline substrate, there was no significant growth observed on
icosahedral quasicrystalline substrate. Raman spectroscopy and high resolution
transmission electron microscopy (HRTEM) results show high crystalline nature
of the nanotubes. Presence of continuous iron filled core in the nanotubes
grown on these substrates was also observed, which is typically not seen in
MWNTs grown using similar process on silicon and/or silicon dioxide substrates.
The study has important implications for understanding the growth mechanism of
MWNTs on conducting substrates which have potential applications as heat sinks
Persistent currents in mesoscopic rings: A numerical and renormalization group study
The persistent current in a lattice model of a one-dimensional interacting
electron system is systematically studied using a complex version of the
density matrix renormalization group algorithm and the functional
renormalization group method. We mainly focus on the situation where a single
impurity is included in the ring penetrated by a magnetic flux. Due to the
interplay of the electron-electron interaction and the impurity the persistent
current in a system of N lattice sites vanishes faster then 1/N. Only for very
large systems and large impurities our results are consistent with the
bosonization prediction obtained for an effective field theory. The results
from the density matrix renormalization group and the functional
renormalization group agree well for interactions as large as the band width,
even though as an approximation in the latter method the flow of the
two-particle vertex is neglected. This confirms that the functional
renormalization group method is a very powerful tool to investigate correlated
electron systems. The method will become very useful for the theoretical
description of the electronic properties of small conducting ring molecules.Comment: 9 pages, 8 figures include
Diamagnetic Persistent Currents and Spontaneous Time-Reversal Symmetry Breaking in Mesoscopic Structures
Recently, new strongly interacting phases have been uncovered in mesoscopic
systems with chaotic scattering at the boundaries by two of the present authors
and R. Shankar. This analysis is reliable when the dimensionless conductance of
the system is large, and is nonperturbative in both disorder and interactions.
The new phases are the mesoscopic analogue of spontaneous distortions of the
Fermi surface induced by interactions in bulk systems and can occur in any
Fermi liquid channel with angular momentum . Here we show that the phase
with even has a diamagnetic persistent current (seen experimentally but
mysterious theoretically), while that with odd can be driven through a
transition which spontaneously breaks time-reversal symmetry by increasing the
coupling to dissipative leads.Comment: 4 pages, three eps figure
A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade
We provide a framework for analyzing the problem of interacting electrons in
a ballistic quantum dot with chaotic boundary conditions within an energy
(the Thouless energy) of the Fermi energy. Within this window we show that the
interactions can be characterized by Landau Fermi liquid parameters. When ,
the dimensionless conductance of the dot, is large, we find that the disordered
interacting problem can be solved in a saddle-point approximation which becomes
exact as (as in a large-N theory). The infinite theory shows a
transition to a strong-coupling phase characterized by the same order parameter
as in the Pomeranchuk transition in clean systems (a spontaneous
interaction-induced Fermi surface distortion), but smeared and pinned by
disorder. At finite , the two phases and critical point evolve into three
regimes in the plane -- weak- and strong-coupling regimes separated
by crossover lines from a quantum-critical regime controlled by the quantum
critical point. In the strong-coupling and quantum-critical regions, the
quasiparticle acquires a width of the same order as the level spacing
within a few 's of the Fermi energy due to coupling to collective
excitations. In the strong coupling regime if is odd, the dot will (if
isolated) cross over from the orthogonal to unitary ensemble for an
exponentially small external flux, or will (if strongly coupled to leads) break
time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we
are treating charge-channel instabilities in spinful systems, leaving
spin-channel instabilities for future work. No substantive results are
change
A new Raman metric for the characterisation of graphene oxide and its derivatives
Raman spectroscopy is among the primary techniques for the characterisation of graphene materials, as it provides insights into the quality of measured graphenes including their structure and conductivity as well as the presence of dopants. However, our ability to draw conclusions based on such spectra is limited by a lack of understanding regarding the origins of the peaks. Consequently, traditional characterisation techniques, which estimate the quality of the graphene material using the intensity ratio between the D and the G peaks, are unreliable for both GO and rGO. Herein we reanalyse the Raman spectra of graphenes and show that traditional methods rely upon an apparent G peak which is in fact a superposition of the G and D’ peaks. We use this understanding to develop a new Raman characterisation method for graphenes that considers the D’ peak by using its overtone the 2D’. We demonstrate the superiority and consistency of this method for calculating the oxygen content of graphenes, and use the relationship between the D’ peak and graphene quality to define three regimes. This has important implications for purification techniques because, once GO is reduced beyond a critical threshold, further reduction offers limited gain in conductivity
- …
