160 research outputs found
Natural and artificial (90Sr) radionuclides in some carbonated mineral waters used in Serbia
A radiological characterization of 7 different carbonated mineral water samples collected in the local supermarkets in the area of Belgrade (produced in Serbia) was carried out. Analysis included determination of gross alpha and gross beta activities. The obtained results showed that the natural activity concentrations of alpha and beta emitting radionuclides in carbonated mineral water samples were within World Health Organization recommended levels, except for the Heba Strong and Kiseljak samples where the beta activity exceeds 1 Bq/L. For these two water samples gamma spectrometry analysis was performed as well as determination of 90Sr by oxalic method. The instrumentation used to count the gross alpha and gross beta activities, as well as for 90Sr, was a/b low level proportional counter Thermo Eberline FHT 770 T. Gamma spectrometric measurements were performed using a HPGe Canberra detector with a counting efficiency of 20%. The annual effective dose equivalent due to ingestion of investigated waters was calculated for age group >17, and obtained values are lower than 0.1 mSv recommended reference level. Finally, a comparison of the investigated waters with worldwide data was made. [Projekat Ministarstva nauke Republike Srbije, br. III43009
Radionuclides in some spring mineral waters in Serbia
Radiochemical analyses ofsome natural mineral bottled waters from different location in Serbia were investigated. Concentrations of all present naturally occurring radionuclides, 238 U, 234U, 232Th, 230Th, 228Th, 228Ra and 226Ra and 234U/238 U, 226Ra/230Th, 228Th /232Th, and 228 Ra/228 Th activity ratios were calculated and discussed. Uranium series disequilibria in the hydrosphere occur due to geochemical differentiation processes resulting with different mobility of the radionuclides from the same series. We have investigated radioactive disequilibrium in the spring waters Crni Guber, Čibutkovica and Studenica, originated from metamorphic rock area. High content of radium isotopes (226Ra, 228Ra) in analysed natural spring waters indicates contribution from other non-water sources, probably environmental sediment.Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200
Migration of depleted uranium contamination through the soil
Military use of ammunition with depleted uranium at South Serbia, caused contamination of the environment. Surface soil and soil profile around projectile with depleted uranium were analyzed three years later by high resolution alpha/gamma spectrometry. It was found that activity levels in the soil layer next to the penetrator changes to 1% of initial value at 15 cm distance. This value is about double background uranium level of the soil at the Bratoselce location.Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200
Chemical and radiochemical fractionation of depleted uranium in contaminated soils
The results of the chemical and radiochemical characterization of depleted uranium present in the soils since it was used in Balkan intervention, 1999, are presented. The contamination levels and uranium fractionation in the soil substrates was examined using radiation spectrometry methods and by application of the five-step sequential extraction procedure. Alpha-spectrometric uranium isotopic analysis enabled to find out the recently appeared uranium in the environment mobility and/or fixation into stable forms in the soil, distinguishing depleted from naturally occurring uranium on the basis of 234U/238U and 235U/238U activities ratios.Physical chemistry 2006 : 8th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 26-29 September 200
Genotoksičnost metalnih nanočestica: osvrt na podatke istraživanja In vivo
With increasing production and application of a variety of nanomaterials (NMs), research on their cytotoxic and genotoxic potential grows, as the exposure to these nano-sized materials may potentially result in adverse health effects. In large part, indications for potential DNA damaging effects of nanoparticles (NPs) originate from inconsistent in vitro studies. To clarify these effects, the implementation of in vivo studies has been emphasised. This paper summarises study results of genotoxic effects of NPs, which are available in the recent literature. They provide indications that some NP types cause both DNA strand breaks and chromosomal damages in experimental animals. Their genotoxic effects, however, do not depend only on particle size, surface modifi cation (particle coating), and exposure route, but also on exposure duration. Currently available animal studies may suggest differing mechanisms (depending on the duration of exposure) by which living organisms react to NP contact. Nevertheless, due to considerable inconsistencies in the recent literature and the lack of standardised test methods - a reliable hazard assessment of NMs is still limited. Therefore, international organisations (e.g. NIOSH) suggest utmost caution when potential exposure of humans to NMs occurs, as long as evidence of their toxicological and genotoxic effect(s) is limited.S povećanjem proizvodnje i primjene niza različitih nanomaterijala (NM) raste i potreba istraživanja njihovih mogućih citotoksičnih i genotoksičnih učinaka kao i drugih štetnih učinaka na zdravlje u uvjetima profesionalne ili opće izloženost ljudi. Indikacije potencijanog oštećenja DNA kojeg uzrokuju nanočestice u velikoj mjeri proizlaze iz nedosljednih in vitro ispitivanja. Kako bi se razjasnili ti učinci, naglašena je potreba provedbe in vivo ispitivanja. Ovaj pregledni rad sažima rezultate procjene genotoksičnih učinaka nanočestica koji su objavljeni u novijoj stručnoj i znanstvenoj literaturi. Navedeni rezultati pokazuju da određene nanočestice uzrokuju lomove u molekuli DNA i oštećuju kromosome u eksperimentalnim životinjama. Njihovi genotoksični učinci ne ovise samo o veličini čestice, modifi kaciji površine (oblaganje čestice) i načinu izlaganja, već i o trajanju izloženosti nanočesticama. Postojeća istraživanja provedena na životinjama upućuju na različite mehanizme koji ovise o trajanju izlaganja i pomoću kojih živi organizmi reagiraju na doticaj s nanočesticama. Međutim postoje brojne nedosljednosti u novijoj literaturi, a standardne testne metode nisu dostupne pa je stoga pouzdanija procjena opasnosti od izlaganja nanomaterijalima u ljudi još uvijek veoma ograničena. Stoga se u međunarodnim dokumentima savjetuje oprez prilikom svakog izlaganja ljudi nanomaterijalima kako bi se spriječili mogući opći toksični genotoksični učinci
Heavy metal content of pm10 and pm2.5 within urban area of Belgrade
An assessment of air quality of Belgrade was performed by determining the trace element content in airborne PM10 and PM2.5 in two years period. Samples were collected at two locations in a heavy polluted area. The concentrations of Al, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn were determined with AAS. Results indicated that the ambient concentration of Zn in the PM10 and PM2.5 was the highest (1389.18 and 1998.00 ng m-3 respectively). Also, the highest enrichment factor (EF) value was obtained for Zn, folowing with high EF for Cd and Pb in PM10, reflecting the importance of anthropogenic inputs. The limit values of toxic trace elements from WHO and EC Air quality guidelines were not exceeded except for Ni.Physical chemistry 2006 : 8th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 26-29 September 200
Nove međunarodne preporuke i zahtevi u vezi izlaganja u nemedicinske svrhe
BSS Directive 2013/59 entered into force on the 6 February 2014 requiring the Member
States to adopt legislation (laws, regulations and administrative provisions) in order to
harmonise their national legislation with requirements of this Directive until 6
February 2018. This Directive explicitly defines „non-medical imaging exposure” as
deliberate exposure of individuals for other than medical purposes. Those planned
exposure situations, if justified need to be subject to the appropriate regulatory
framework for optimization of protection, exemption, notification, authorisation,
inspection and law enforcement in order to insure safety in operation. The most
challenging part is a justification process of „non-medical imaging exposure“ taking
into account that regulatory radiation protection authorities have limited responsibility
in decision making process. BSS Directive recommends regular periodical review of
justified practices involving deliberate exposure of humans for non-medical imaging
purposes taking into account new technologies available, magnitude of radiological
exposure during screening and other screening objectives. Dose constrains for different
categories of exposures (public exposure, occupational exposure) depending on
particular application, should be established and used in the optimisation of protection.
In addition, appropriate regulatory control should be established and enforced as well
as the stakeholder dialoge and the provision of information responsive to stakeholders
concerns.BSS direktiva 2013/59 stupila je na snagu 6. februara 2014. godine. To znači da su
države članice u obavezi da usvoje legislativu (zakone, uredbe i upravne odredbe) kako
bi uskladile svoje nacionalno zakonodavstvo sa zahtevima ove Direktive do 6. februara
2018. godine. Ova Direktiva jasno definiše „nemediciska izlaganja“ kao namerna
izlaganja pojedinaca u svrhe koje nisu medicinske. Ukoliko su ove situacije planiranog
izlaganja opravdane potrebno je da budu deo regulatornog okvira tj. da se na njih
primenjuju zahtevi za: optimizaciju zaštite, izuzimanje, prijavljivanje, odobrenje delatnosti kao i inspekciju i sprovođenje propisa a u cilju obezbeđivanja sigurnosti tokom
rada. Najzahtevniji deo je proces opravdavanja nemediciskih izlaganja imajući u vidu
da regulatorna tela za zaštitu od zračenja imaju ograničenu odgovornost u procesu
donošenja odluke o opravdanosti delatnosti. Preporuka BSS direktive je da se periodično vrši revizija opravdanih delatnosti koje uključuju namerna izlaganja ljudi u
nemedicinske svrhe uzimajući u obzir nove dostupne tehnologije, stepen izlaganja
zračenju tokom skrininga i druge ciljeve skrininga. U procesu optimizacije zaštite
potrebno je uspostaviti i primenjivati ograničenja doza za različite kategorije izlaganja
(izlaganje stanovništva, profesionalno izlaganje) u zavisnosti od pojedinačne primene.
Takođe, potrebno je uspostaviti i primenjivati odgovarajuću regulatornu kontrolu kao i
sprovoditi dijalog i obezbediti odgovarajuće informacije u vezi sa pitanjima svih
zainteresovanih strana.Зборник радова : XXIX симпозијум ДЗЗСЦГ : Сребрно језеро, 27-29. септембар 2017. годин
Radijacioni rizik
Једно од основних питања у области заштите од зрачења је процена прихватљивости ризика од зрачења, што је формулисано и кроз три принципа заштите од зрачења: оправданост, оптимизација и ограничење дозе. Спровођење ових принципа је сложен процес који захтева примену низа активности и вештина из различитих области од правно регулаторних до уско стручних тј. природно техничких или хуманитарно медицинских наука. Почетне тачке у разматрању примене извора зрачења су процена користи тј. добробити од примене извора зрачења и процена радијационог ризика коју та примена носи. У овом раду су такође разматране и вредности доза тј. шта сматрамо високим а шта ниским дозама, приступ процени радијационог ризика као и преглед вредности за неке границе излагања.Having in mind that all human activities carry some sort of risks, one of the main issue
of radiation protection is assessment of the acceptability of risks of using radiation
sources. This is also, the first step of applying ALARA principle. Risk is a synonym for
probability of harmful effect and takes into account probability of happening some
events and severity of consequences. This is complicated task in which have to be
involved many specialist and skills from different parts of science. The paper discussed
some effective dose values, the way of calculation risks from low doses and connection
of dose and risks with terms from regular usage such as: high doses, low doses and very
low doses.Зборник радова : XXIX симпозијум ДЗЗСЦГ : Сребрно језеро, 27-29. септембар 2017. годин
Nove međunarodne preporuke i zahtevi u vezi izlaganja u nemedicinske svrhe
BSS Directive 2013/59 entered into force on the 6 February 2014 requiring the Member
States to adopt legislation (laws, regulations and administrative provisions) in order to
harmonise their national legislation with requirements of this Directive until 6
February 2018. This Directive explicitly defines „non-medical imaging exposure” as
deliberate exposure of individuals for other than medical purposes. Those planned
exposure situations, if justified need to be subject to the appropriate regulatory
framework for optimization of protection, exemption, notification, authorisation,
inspection and law enforcement in order to insure safety in operation. The most
challenging part is a justification process of „non-medical imaging exposure“ taking
into account that regulatory radiation protection authorities have limited responsibility
in decision making process. BSS Directive recommends regular periodical review of
justified practices involving deliberate exposure of humans for non-medical imaging
purposes taking into account new technologies available, magnitude of radiological
exposure during screening and other screening objectives. Dose constrains for different
categories of exposures (public exposure, occupational exposure) depending on
particular application, should be established and used in the optimisation of protection.
In addition, appropriate regulatory control should be established and enforced as well
as the stakeholder dialoge and the provision of information responsive to stakeholders
concerns.BSS direktiva 2013/59 stupila je na snagu 6. februara 2014. godine. To znači da su
države članice u obavezi da usvoje legislativu (zakone, uredbe i upravne odredbe) kako
bi uskladile svoje nacionalno zakonodavstvo sa zahtevima ove Direktive do 6. februara
2018. godine. Ova Direktiva jasno definiše „nemediciska izlaganja“ kao namerna
izlaganja pojedinaca u svrhe koje nisu medicinske. Ukoliko su ove situacije planiranog
izlaganja opravdane potrebno je da budu deo regulatornog okvira tj. da se na njih
primenjuju zahtevi za: optimizaciju zaštite, izuzimanje, prijavljivanje, odobrenje delatnosti kao i inspekciju i sprovođenje propisa a u cilju obezbeđivanja sigurnosti tokom
rada. Najzahtevniji deo je proces opravdavanja nemediciskih izlaganja imajući u vidu
da regulatorna tela za zaštitu od zračenja imaju ograničenu odgovornost u procesu
donošenja odluke o opravdanosti delatnosti. Preporuka BSS direktive je da se periodično vrši revizija opravdanih delatnosti koje uključuju namerna izlaganja ljudi u
nemedicinske svrhe uzimajući u obzir nove dostupne tehnologije, stepen izlaganja
zračenju tokom skrininga i druge ciljeve skrininga. U procesu optimizacije zaštite
potrebno je uspostaviti i primenjivati ograničenja doza za različite kategorije izlaganja
(izlaganje stanovništva, profesionalno izlaganje) u zavisnosti od pojedinačne primene.
Takođe, potrebno je uspostaviti i primenjivati odgovarajuću regulatornu kontrolu kao i
sprovoditi dijalog i obezbediti odgovarajuće informacije u vezi sa pitanjima svih
zainteresovanih strana.Зборник радова : XXIX симпозијум ДЗЗСЦГ : Сребрно језеро, 27-29. септембар 2017. годин
- …
