255 research outputs found

    Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation

    Get PDF
    The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor. © 2009 Nature America, Inc. All rights reserved

    Distinct inactive conformations of the dopamine D2 and D3 receptors correspond to different extents of inverse agonism

    Get PDF
    By analyzing and simulating inactive conformations of the highly-homologous dopamine D2 and D3 receptors (D2R and D3R), we find that eticlopride binds D2R in a pose very similar to that in the D3R/eticlopride structure but incompatible with the D2R/risperidone structure. In addition, risperidone occupies a sub-pocket near the Na+ binding site, whereas eticlopride does not. Based on these findings and our experimental results, we propose that the divergent receptor conformations stabilized by Na+-sensitive eticlopride and Na+-insensitive risperidone correspond to different degrees of inverse agonism. Moreover, our simulations reveal that the extracellular loops are highly dynamic, with spontaneous transitions of extracellular loop 2 from the helical conformation in the D2R/risperidone structure to an extended conformation similar to that in the D3R/eticlopride structure. Our results reveal previously unappreciated diversity and dynamics in the inactive conformations of D2R. These findings are critical for rational drug discovery, as limiting a virtual screen to a single conformation will miss relevant ligands

    Molecular Determinants of the Intrinsic Efficacy of the Antipsychotic Aripiprazole

    Get PDF
    Partial agonists of the dopamine D2 receptor (D2R) have been developed to treat the symptoms of schizophrenia without causing the side effects elicited by antagonists. The receptor-ligand interactions that determine the intrinsic efficacy of such drugs, however, are poorly understood. Aripiprazole has an extended structure comprising a phenylpiperazine primary pharmacophore and a 1,2,3,4-tetrahydroquinolin-2-one secondary pharmacophore. We combined site-directed mutagenesis, analytical pharmacology, ligand fragments and molecular dynamics simulations to identify the D2R-aripiprazole interactions that contribute to affinity and efficacy. We reveal that an interaction between the secondary pharmacophore of aripiprazole and a secondary binding pocket defined by residues at the extracellular portions of transmembrane segments 1, 2 and 7 determine the intrinsic efficacy of aripiprazole. Our findings reveal a hitherto unappreciated mechanism through which to fine-tune the intrinsic efficacy of D2R agonists

    Specific oligomerization of the 5-HT1A receptor in the plasma membrane

    Get PDF
    In the present study we analyze the oligomerization of the 5-HT1A receptor within living cells at the sub-cellular level. Using a 2-excitation Förster Resonance Energy Transfer (FRET) method combined with spectral microscopy we are able to estimate the efficiency of energy transfer based on donor quenching as well as acceptor sensitization between CFP-and YFP-tagged 5-HT1A receptors at the plasma membrane. Through the analysis of the level of apparent FRET efficiency over the various relative amounts of donor and acceptor, as well as over a range of total surface expressions of the receptor, we verify the specific interaction of these receptors. Furthermore we study the role of acylation in this interaction through measurements of a palmitoylation-deficient 5-HT1A receptor mutant. Palmitoylation increases the tendency of a receptor to localize in lipid rich microdomains of the plasma membrane. This increases the effective surface density of the receptor and provides for a higher level of stochastic interaction

    (Re)Moralizing the suicide debate

    Get PDF
    Contemporary approaches to the study of suicide tend to examine suicide as a medical or public health problem rather than a moral problem, avoiding the kinds of judgements that have historically characterised discussions of the phenomenon. But morality entails more than judgement about action or behaviour, and our understanding of suicide can be enhanced by attending to its cultural, social, and linguistic connotations. In this work, I offer a theoretical reconstruction of suicide as a form of moral experience that delineates five distinct, yet interrelated domains of understanding – the temporal, the relational, the existential, the ontological, and the linguistic. Attention to each of these domains, I argue, not only enriches our understanding of the moral realm, but provides a heuristic for examining the moral traditions and practices which constitute contemporary understandings of suicide. Keywords: Suicide; philosophy; social values; humanitie

    Functional selectivity and classical concepts of quantitative pharmacology

    Get PDF
    The concept of intrinsic efficacy has been enshrined in pharmacology for half of a century, yet recent data have revealed that many ligands can differentially activate signaling pathways mediated via a single G protein-coupled receptor in a manner that challenges the traditional definition of intrinsic efficacy. Some terms for this phenomenon include functional selectivity, agonist-directed trafficking, and biased agonism. At the extreme, functionally selective ligands may be both agonists and antagonists at different functions mediated by the same receptor. Data illustrating this phenomenon are presented from serotonin, opioid, dopamine, vasopressin, and adrenergic receptor systems. A variety of mechanisms may influence this apparently ubiquitous phenomenon. It may be initiated by differences in ligand-induced intermediate conformational states, as shown for the β2-adrenergic receptor. Subsequent mechanisms that may play a role include diversity of G proteins, scaffolding and signaling partners, and receptor oligomers. Clearly, expanded research is needed to elucidate the proximal (e.g., how functionally selective ligands cause conformational changes that initiate differential signaling), intermediate (mechanisms that translate conformation changes into differential signaling), and distal mechanisms (differential effects on target tissue or organism). Besides the heuristically interesting nature of functional selectivity, there is a clear impact on drug discovery, because this mechanism raises the possibility of selecting or designing novel ligands that differentially activate only a subset of functions of a single receptor, thereby optimizing therapeutic action. It also may be timely to revise classic concepts in quantitative pharmacology and relevant pharmacological conventions to incorporate these new concepts

    Identification of a Lipid-Exposed Extrahelical Binding Site for Positive Allosteric Modulators of the Dopamine D₂ Receptor

    Get PDF
    Recently, the first small-molecule positive allosteric modulators (PAMs) of the dopamine D2 receptor (D2R) were identified. The more potent PAM potentiated the effects of D2R signaling in vitro and in an in vivo model predictive of anti-Parkinson’s efficacy. We reveal, based on the results of our site-directed mutagenesis and molecular dynamics experiments, that this scaffold binds to a hitherto unexploited lipid-exposed extrahelical allosteric site in the D2R that lies in a cleft toward the intracellular aspect of the D2R defined by residues in transmembrane domains 1 and 7 and helix 8. By binding to this site, the PAM acts to potentiate the binding affinity of efficacious agonists, such as dopamine. Our simulations suggest that the PAM achieves this effect by stabilizing an active-like conformation of the receptor, similar to the G protein-bound state with TM5 and the tyrosine toggle switch playing the major role

    A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects

    Get PDF
    Mitragynine and 7-hydroxymitragynine (7OH) are the major alkaloids mediating the biological actions of the psychoactive plant kratom. To investigate the structure-activity relationships of mitragynine/7OH templates, we diversified the aromatic ring of the indole at the C9, C10, and C12 positions and investigated their G-protein and arrestin signaling mediated by mu opioid receptors (MOR). Three synthesized lead C9 analogs replacing the 9-OCH3group with phenyl (4), methyl (5), or 3′-furanyl [6(SC13)] substituents demonstrated partial agonism with a lower efficacy than DAMGO or morphine in heterologous G-protein assays and synaptic physiology. In assays limiting MOR reserve, the G-protein efficacy of all three was comparable to buprenorphine.6(SC13) showed MOR-dependent analgesia with potency similar to morphine without respiratory depression, hyperlocomotion, constipation, or place conditioning in mice. These results suggest the possibility of activating MOR minimally (G-proteinEmax≈ 10%) in cell lines while yet attaining maximal antinociceptionin vivowith reduced opioid liabilities
    corecore