375 research outputs found

    Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis

    Full text link
    Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Recent algebraic techniques introduced by Jonsson et al. (SODA 2013) show that the time complexity of the parameterized SAT(\cdot) problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation RR such that SAT(RR) can be solved at least as fast as any other NP-hard SAT(\cdot) problem. In this paper we extend this method and show that such languages also exist for the max ones problem (MaxOnes(Γ\Gamma)) and the Boolean valued constraint satisfaction problem over finite-valued constraint languages (VCSP(Δ\Delta)). With the help of these languages we relate MaxOnes and VCSP to the exponential time hypothesis in several different ways.Comment: This is an extended version of Relating the Time Complexity of Optimization Problems in Light of the Exponential-Time Hypothesis, appearing in Proceedings of the 39th International Symposium on Mathematical Foundations of Computer Science MFCS 2014 Budapest, August 25-29, 201

    Solving order constraints in logarithmic space.

    Get PDF
    We combine methods of order theory, finite model theory, and universal algebra to study, within the constraint satisfaction framework, the complexity of some well-known combinatorial problems connected with a finite poset. We identify some conditions on a poset which guarantee solvability of the problems in (deterministic, symmetric, or non-deterministic) logarithmic space. On the example of order constraints we study how a certain algebraic invariance property is related to solvability of a constraint satisfaction problem in non-deterministic logarithmic space

    Tropically convex constraint satisfaction

    Full text link
    A semilinear relation S is max-closed if it is preserved by taking the componentwise maximum. The constraint satisfaction problem for max-closed semilinear constraints is at least as hard as determining the winner in Mean Payoff Games, a notorious problem of open computational complexity. Mean Payoff Games are known to be in the intersection of NP and co-NP, which is not known for max-closed semilinear constraints. Semilinear relations that are max-closed and additionally closed under translations have been called tropically convex in the literature. One of our main results is a new duality for open tropically convex relations, which puts the CSP for tropically convex semilinaer constraints in general into NP intersected co-NP. This extends the corresponding complexity result for scheduling under and-or precedence constraints, or equivalently the max-atoms problem. To this end, we present a characterization of max-closed semilinear relations in terms of syntactically restricted first-order logic, and another characterization in terms of a finite set of relations L that allow primitive positive definitions of all other relations in the class. We also present a subclass of max-closed constraints where the CSP is in P; this class generalizes the class of max-closed constraints over finite domains, and the feasibility problem for max-closed linear inequalities. Finally, we show that the class of max-closed semilinear constraints is maximal in the sense that as soon as a single relation that is not max-closed is added to L, the CSP becomes NP-hard.Comment: 29 pages, 2 figure

    The STAR MAPS-based PiXeL detector

    Get PDF
    The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Custom built pixel sensors, their readout electronics and the detector mechanical structure are described in detail. Selected detector design aspects and production steps are presented. The detector operations during the three years of data taking (2014-2016) and the overall performance exceeding the design specifications are discussed in the conclusive sections of this paper

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    Tractability in Constraint Satisfaction Problems: A Survey

    Get PDF
    International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP

    GRS 1915+105 : High-energy Insights with SPI/INTEGRAL

    Full text link
    We report on results of two years of INTEGRAL/SPI monitoring of the Galactic microquasar GRS 1915+105. From September 2004 to May 2006, the source has been observed twenty times with long (approx 100 ks) exposures. We present an analysis of the SPI data and focus on the description of the high-energy (> 20 keV) output of the source. We found that the 20 - 500 keV spectral emission of GRS 1915+105 was bound between two states. It seems that these high-energy states are not correlated with the temporal behavior of the source, suggesting that there is no direct link between the macroscopic characteristics of the coronal plasma and the the variability of the accretion flow. All spectra are well fitted by a thermal comptonization component plus an extra high-energy powerlaw. This confirms the presence of thermal and non-thermal electrons around the black hole.Comment: 7 pages, 8 figures, 2 tables; accepted (09/11/2008) for publication in A&
    corecore