378 research outputs found

    Correction of electrode modelling errors in multi-frequency EIT imaging

    Get PDF
    The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT

    Are patient specific meshes required for EIT head imaging?

    Get PDF
    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma

    Pauli spin blockade in CMOS double quantum dot devices

    Full text link
    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.Comment: 5 pages , 4 figure

    Thermionic charge transport in CMOS nano-transistors

    Full text link
    We report on DC and microwave electrical transport measurements in silicon-on-insulator CMOS nano-transistors at low and room temperature. At low source-drain voltage, the DC current and RF response show signs of conductance quantization. We attribute this to Coulomb blockade resulting from barriers formed at the spacer-gate interfaces. We show that at high bias transport occurs thermionically over the highest barrier: Transconductance traces obtained from microwave scattering-parameter measurements at liquid helium and room temperature is accurately fitted by a thermionic model. From the fits we deduce the ratio of gate capacitance and quantum capacitance, as well as the electron temperature

    Size scaling of the addition spectra in silicon quantum dots

    Full text link
    We investigate small artificial quantum dots obtained by geometrically controlled resistive confinement in low mobility silicon-on-insulator nanowires. Addition spectra were recorded at low temperature for various dot areas fixed by lithography. We compare the standard deviation of the addition spectra with theory in the high electron concentration regime. We find that the standard deviation scales as the inverse area of the dot and its absolute value is comparable to the energy spacing of the one particle spectrum.Comment: 4 pages, 5 figure

    Full Current Statistics in Diffusive Normal-Superconductor Structures

    Full text link
    We study the current statistics in normal diffusive conductors in contact with a superconductor. Using an extension of the Keldysh Green's function method we are able to find the full distribution of charge transfers for all temperatures and voltages. For the non-Gaussian regime, we show that the equilibrium current fluctuations are enhanced by the presence of the superconductor. We predict an enhancement of the nonequilibrium current noise for temperatures below and voltages of the order of the Thouless energy E_Th=D/L^2. Our calculation fully accounts for the proximity effect in the normal metal and agrees with experimental data. We demonstrate that the calculation of the full current statistics is in fact simpler than a concrete calculation of the noise.Comment: 4 pages, 2 figures (included

    A CMOS silicon spin qubit

    Full text link
    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot (QD) encoding a hole spin qubit, the second one a QD used for the qubit readout. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. Our result opens a viable path to qubit up-scaling through a readily exploitable CMOS platform.Comment: 12 pages, 4 figure

    Energy dependent counting statistics in diffusive superconducting tunnel junctions

    Full text link
    We present an investigation of the energy dependence of the full charge counting statistics in diffusive normal-insulating-normal-insulating-superconducting junctions. It is found that the current in general is transported via a correlated transfer of pairs of electrons. Only in the case of strongly asymmetric tunnel barriers or energies much larger than the Thouless energy is the pair transfer uncorrelated. The second cumulant, the noise, is found to depend strongly on the applied voltage and temperature. For a junction resistance dominated by the tunnel barrier to the normal reservoir, the differential shot noise shows a double peak feature at voltages of the order of the Thouless energy, a signature of an ensemble averaged electron-hole resonance.Comment: 8 pages, 5 figure

    Two-dimensional array of diffusive SNS junctions with high-transparent interfaces

    Full text link
    We report the first comparative study of the properties of two-dimensional arrays and single superconducting film - normal wire - superconducting film (SNS) junctions. The NS interfaces of our SNS junctions are really high transparent, for superconducting and normal metal parts are made from the same material (superconducting polycrystalline PtSi film). We have found that the two-dimensional arrays reveal some novel features: (i) the significant narrowing of the zero bias anomaly (ZBA) in comparison with single SNS junctions, (ii) the appearance of subharmonic energy gap structure (SGS), with up to n=16 (eV=\pm 2\Delta/n), with some numbers being lost, (iii) the transition from 2D logarithmic weak localization behavior to metallic one. Our experiments show that coherent phenomena governed by the Andreev reflection are not only maintained over the macroscopic scale but manifest novel pronounced effects as well. The behavior of the ZBA and SGS in 2D array of SNS junctions strongly suggests that the development of a novel theoretical approach is needed which would self-consistently take into account the distribution of the currents, the potentials, and the superconducting order parameter.Comment: RevTex, 5 pages, 5 figure
    corecore