1,966 research outputs found
Enthalpy damping for the steady Euler equations
For inviscid steady flow problems where the enthalpy is constant at steady state, it was previously proposed to use the difference between the local enthalpy and the steady state enthalpy as a driving term to accelerate convergence of iterative schemes. This idea is analyzed, both on the level of the partial differential equation and on the level of a particular finite difference scheme. It is shown that for the two-dimensional unsteady Euler equations, a hyperbolic system with eigenvalues on the imaginary axis, there is no enthalpy damping strategy which moves all the eigenvalues into the open left half plane. For the numerical scheme, however, the analysis shows and examples verify that enthalpy damping is potentially effective in accelerating convergence to steady state
Disruption management in passenger railway transportation.
This paper deals with disruption management in passengerrailway transportation. In the disruption management process, manyactors belonging to different organizations play a role. In this paperwe therefore describe the process itself and the roles of thedifferent actors.Furthermore, we discuss the three main subproblems in railwaydisruption management: timetable adjustment, and rolling stock andcrew re-scheduling. Next to a general description of these problems,we give an overview of the existing literature and we present somedetails of the specific situations at DSB S-tog and NS. These arethe railway operators in the suburban area of Copenhagen, Denmark,and on the main railway lines in the Netherlands, respectively.Since not much research has been carried out yet on OperationsResearch models for disruption management in the railway context,models and techniques that have been developed for related problemsin the airline world are discussed as well.Finally, we address the integration of the re-scheduling processesof the timetable, and the resources rolling stock and crew.
A Semiconductor Nanowire-Based Superconducting Qubit
We introduce a hybrid qubit based on a semiconductor nanowire with an
epitaxially grown superconductor layer. Josephson energy of the transmon-like
device ("gatemon") is controlled by an electrostatic gate that depletes
carriers in a semiconducting weak link region. Strong coupling to an on-chip
microwave cavity and coherent qubit control via gate voltage pulses is
demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and
dephasing times (1 {\mu}s), exceeding gate operation times by two orders of
magnitude, in these first-generation devices. Because qubit control relies on
voltages rather than fluxes, dissipation in resistive control lines is reduced,
screening reduces crosstalk, and the absence of flux control allows operation
in a magnetic field, relevant for topological quantum information
Small-World Networks: Links with long-tailed distributions
Small-world networks (SWN), obtained by randomly adding to a regular
structure additional links (AL), are of current interest. In this article we
explore (based on physical models) a new variant of SWN, in which the
probability of realizing an AL depends on the chemical distance between the
connected sites. We assume a power-law probability distribution and study
random walkers on the network, focussing especially on their probability of
being at the origin. We connect the results to L\'evy Flights, which follow
from a mean field variant of our model.Comment: 11 pages, 4 figures, to appear in Phys.Rev.
Synchronization Landscapes in Small-World-Connected Computer Networks
Motivated by a synchronization problem in distributed computing we studied a
simple growth model on regular and small-world networks, embedded in one and
two-dimensions. We find that the synchronization landscape (corresponding to
the progress of the individual processors) exhibits Kardar-Parisi-Zhang-like
kinetic roughening on regular networks with short-range communication links.
Although the processors, on average, progress at a nonzero rate, their spread
(the width of the synchronization landscape) diverges with the number of nodes
(desynchronized state) hindering efficient data management. When random
communication links are added on top of the one and two-dimensional regular
networks (resulting in a small-world network), large fluctuations in the
synchronization landscape are suppressed and the width approaches a finite
value in the large system-size limit (synchronized state). In the resulting
synchronization scheme, the processors make close-to-uniform progress with a
nonzero rate without global intervention. We obtain our results by ``simulating
the simulations", based on the exact algorithmic rules, supported by
coarse-grained arguments.Comment: 20 pages, 22 figure
Rapid Processing of Net-Shape Thermoplastic Planar-Random Composite Preforms
A novel thermoplastic composite preforming and moulding process is investigated to target cost issues in textile composite processing associated with trim waste, and the limited mechanical properties of current bulk flow-moulding composites. The thermoplastic programmable powdered preforming process (TP-P4) uses commingled glass and polypropylene yarns, which are cut to length before air assisted deposition onto a vacuum screen, enabling local preform areal weight tailoring. The as-placed fibres are heat-set for improved handling before an optional preconsolidation stage. The preforms are then preheated and press formed to obtain the final part. The process stages are examined to optimize part quality and throughput versus processing parameters. A viable processing route is proposed with typical cycle times below 40s (for a plate 0.5 × 0.5m2, weighing 2kg), enabling high production capacity from one line. The mechanical performance is shown to surpass that of 40wt.% GMT and has properties equivalent to those of 40wt.% GMTex at both 20°C and 80°
Relaxation Properties of Small-World Networks
Recently, Watts and Strogatz introduced the so-called small-world networks in
order to describe systems which combine simultaneously properties of regular
and of random lattices. In this work we study diffusion processes defined on
such structures by considering explicitly the probability for a random walker
to be present at the origin. The results are intermediate between the
corresponding ones for fractals and for Cayley trees.Comment: 16 pages, 6 figure
Organ-specific responses during brain death:increased aerobic metabolism in the liver and anaerobic metabolism with decreased perfusion in the kidneys
Hepatic and renal energy status prior to transplantation correlates with graft survival. However, effects of brain death (BD) on organ-specific energy status are largely unknown. We studied metabolism, perfusion, oxygen consumption, and mitochondrial function in the liver and kidneys following BD. BD was induced in mechanically-ventilated rats, inflating an epidurally-placed Fogarty-catheter, with sham-operated rats as controls. A 9.4T-preclinical MRI system measured hourly oxygen availability (BOLD-related R2*) and perfusion (T1-weighted). After 4 hrs, tissue was collected, mitochondria isolated and assessed with high-resolution respirometry. Quantitative proteomics, qPCR, and biochemistry was performed on stored tissue/plasma. Following BD, the liver increased glycolytic gene expression (Pfk-1) with decreased glycogen stores, while the kidneys increased anaerobic- (Ldha) and decreased gluconeogenic-related gene expression (Pck-1). Hepatic oxygen consumption increased, while renal perfusion decreased. ATP levels dropped in both organs while mitochondrial respiration and complex I/ATP synthase activity were unaffected. In conclusion, the liver responds to increased metabolic demands during BD, enhancing aerobic metabolism with functional mitochondria. The kidneys shift towards anaerobic energy production while renal perfusion decreases. Our findings highlight the need for an organ-specific approach to assess and optimise graft quality prior to transplantation, to optimise hepatic metabolic conditions and improve renal perfusion while supporting cellular detoxification
Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO
The two-dimensional metal forming at the interface between an oxide insulator
and SrTiO3 provides new opportunities for oxide electronics. However, the
quantum Hall effect, one of the most fascinating effects of electrons confined
in two dimensions, remains underexplored at these complex oxide
heterointerfaces. Here, we report the experimental observation of quantized
Hall resistance in a SrTiO3 heterointerface based on the modulation-doped
amorphous-LaAlO/SrTiO heterostructure, which exhibits both high
electron mobility exceeding 10000 cm/Vs and low carrier density on the
order of ~10 cm. Along with unambiguous Shubnikov-de Haas
oscillations, the spacing of the quantized Hall resistance suggests that the
interface is comprised of a single quantum well with ten parallel conducting
two-dimensional subbands. This provides new insight into the electronic
structure of conducting oxide interfaces and represents an important step
towards designing and understanding advanced oxide devices
- …
