1,810 research outputs found
Muon Spin Relaxation Studies of Superconductivity in a Crystalline Array of Weakly Coupled Metal Nanoparticles
We report Muon Spin Relaxation studies in weak transverse fields of the
superconductivity in the metal cluster compound,
Ga[N(SiMe)]-LiBr(thf)2toluene. The temperature and field dependence of the muon spin relaxation
rate and Knight shift clearly evidence type II bulk superconductivity below
K, with T,
T, and weak flux pinning. The data
are well described by the s-wave BCS model with weak electron-phonon coupling
in the clean limit. A qualitative explanation for the conduction mechanism in
this novel type of narrow band superconductor is presented.Comment: 4 figures, 5 page
Superconductivity in a Molecular Metal Cluster Compound
Compelling evidence for band-type conductivity and even bulk
superconductivity below K has been found in
Ga-NMR experiments in crystalline ordered, giant Ga
cluster-compounds. This material appears to represent the first realization of
a theoretical model proposed by Friedel in 1992 for superconductivity in
ordered arrays of weakly coupled, identical metal nanoparticles.Comment: 5 pages, 4 figure
The 1/D Expansion for Classical Magnets: Low-Dimensional Models with Magnetic Field
The field-dependent magnetization m(H,T) of 1- and 2-dimensional classical
magnets described by the -component vector model is calculated analytically
in the whole range of temperature and magnetic fields with the help of the 1/D
expansion. In the 1-st order in 1/D the theory reproduces with a good accuracy
the temperature dependence of the zero-field susceptibility of antiferromagnets
\chi with the maximum at T \lsim |J_0|/D (J_0 is the Fourier component of the
exchange interaction) and describes for the first time the singular behavior of
\chi(H,T) at small temperatures and magnetic fields: \lim_{T\to 0}\lim_{H\to 0}
\chi(H,T)=1/(2|J_0|)(1-1/D) and \lim_{H\to 0}\lim_{T\to 0}
\chi(H,T)=1/(2|J_0|)
Magnetic Properties of a Quantum Ferrimagnet: NiCu(pba)(D_2O)_3 . 2D_2O
We report the results of magnetic measurements on a powder sample of
NiCu(pba)(D_2O)_3 \cdot 2D_2OS\chi\chi TT\chi TJ/k_B=121
K^{2+}^{2+}g_{Ni}g_{Cu}\chi T$ at low temperatures
is reproduced fairly well by the calculation for the same ferrimagnetic model.Comment: 7pages, 4 postscript figures, usues REVTEX. appear in J. Phys. Soc.
Jpn vol 67 No.7 (1998
A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets
We give a sharpening of a recent result of Aschenbrenner and Pong about the maximal order type of the term ordering on the finite multisets over a wpo. Moreover we discuss an approach to compute maximal order types of well-partial orders which are related to tree embeddings
Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels
The cloning of the cDNA for the α1 subunit of L-type calcium channels revealed that at least two genes (CaCh1 and CaCh2) exist which give rise to several splice variants. The expression of mRNA for these α1 subunits and the skeletal muscle α2/δ, β and γ subunits was studied in rabbit tissues and BC3H1 cells. Nucleic-acid-hybridization studies showed that the mRNA of all subunits are expressed in skeletal muscle, brain, heart and aorta. However, the α1-, β- and γ-specific transcripts had different sizes in these tissues. Smooth muscle and heart contain different splice variants of the CaCh2 gene. The α1, β and γ mRNA are expressed together in differentiated but not in proliferating BC3H1 cells. A probe specific for the skeletal muscle α2/δ subunit did not hybridize to poly(A)-rich RNA from BC3H1 cells. These results suggest that different splice variants of the genes for the α1, β and γ subunits exist in tissues containing L-type calcium channels, and that their expression is regulated in a coordinate manner
Quantum Phase Transition of Randomly-Diluted Heisenberg Antiferromagnet on a Square Lattice
Ground-state magnetic properties of the diluted Heisenberg antiferromagnet on
a square lattice are investigated by means of the quantum Monte Carlo method
with the continuous-time loop algorithm. It is found that the critical
concentration of magnetic sites is independent of the spin size S, and equal to
the two-dimensional percolation threshold. However, the existence of quantum
fluctuations makes the critical exponents deviate from those of the classical
percolation transition. Furthermore, we found that the transition is not
universal, i.e., the critical exponents significantly depend on S.Comment: RevTeX, 4 pages including 5 EPS figure
Performance of the modified TRISS for evaluating trauma care in subpopulations: A cohort study
Introduction: Previous research showed that there is no agreement on a practically applicable model to use in the evaluation of trauma care. A modification of the Trauma and Injury Severity Score (modified TRISS) is used to evaluate trauma care in the Netherlands. The aim of this study w
Classical Correlation-Length Exponent in Non-Universal Quantum Phase Transition of Diluted Heisenberg Antiferromagnet
Critical behavior of the quantum phase transition of a site-diluted
Heisenberg antiferromagnet on a square lattice is investigated by means of the
quantum Monte Carlo simulation with the continuous-imaginary-time loop
algorithm. Although the staggered spin correlation function decays in a power
law with the exponent definitely depending on the spin size , the
correlation-length exponent is classical, i.e., . This implies that
the length scale characterizing the non-universal quantum phase transition is
nothing but the mean size of connected spin clusters.Comment: 4 pages, 3 figure
Field induced long-range-ordering in an S=1 quasi-one-dimensional Heisenberg antiferromagnet
We have measured the heat capacity and magnetization of the spin one
one-dimensional Heisenberg antiferromagnet NDMAP and constructed a magnetic
field versus temperature phase diagram. We found a field induced long-range
magnetic ordering. We have been successful in explaining the phase diagram
theoretically.Comment: 6 pages, 18 figure
- …
