4,798 research outputs found
Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range
We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300– 700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation
Recommended from our members
Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons
Single and Many Particle Correlation Functions and Uniform Phase Bases for Strongly Correlated Systems
The need for suitable many or infinite fermion correlation functions to
describe some low dimensional strongly correlated systems is discussed. This is
linked to the need for a correlated basis, in which the ground state may be
postive definite, and in which single particle correlations may suffice. A
particular trial basis is proposed, and applied to a certain quasi-1D model.
The model is a strip of the 2D square lattice wrapped around a cylinder, and is
related to the ladder geometries, but with periodic instead of open boundary
conditions along the edges. Analysis involves a novel mean-field approach and
exact diagonalisation. The model has a paramagnetic region and a Nagaoka
ferromagnetic region. The proposed basis is well suited to the model, and
single particle correlations in it have power law decay for the paramagnet,
where the charge motion is qualitatively hard core bosonic. The mean field also
leads to a BCS-type model with single particle long range order.Comment: 23 pages, in plain tex, 12 Postscript figures included. Accepted for
publication in J.Physics : Condensed Matte
Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park
We report on net ecosystem production (NEP) and key environmental controls on net ecosystem exchange (NEE) of carbon dioxide (CO2) between a mangrove forest and the atmosphere in the coastal Florida Everglades. An eddy covariance system deployed above the canopy was used to determine NEE during January 2004 through August 2005. Maximum daytime NEE ranged from −20 to −25 mmol (CO2) m−2 s−1 between March and May. Respiration (Rd) was highly variable (2.81 ± 2.41 mmol (CO2) m−2 s−1), reaching peak values during the summer wet season. During the winter dry season, forest CO2 assimilation increased with the proportion of diffuse solar irradiance in response to greater radiative transfer in the forest canopy. Surface water salinity and tidal activity were also important controls on NEE. Daily light use efficiency was reduced at high (\u3e34 parts per thousand (ppt)) compared to low (ppt) salinity by 46%. Tidal inundation lowered daytime Rd by ∼0.9 mmol (CO2) m−2 s−1 and nighttime Rd by ∼0.5 mmol (CO2) m−2 s−1. The forest was a sink for atmospheric CO2, with an annual NEP of 1170 ± 127 g C m−2 during 2004. This unusually high NEP was attributed to year‐round productivity and low ecosystem respiration which reached a maximum of only 3 g C m−2 d−1. Tidal export of dissolved inorganic carbon derived from belowground respiration likely lowered the estimates of mangrove forest respiration. These results suggest that carbon balance in mangrove coastal systems will change in response to variable salinity and inundation patterns, possibly resulting from secular sea level rise and climate change. Citation: Barr, J. G., V. Engel, J. D. Fuentes
Recommended from our members
The impact of local sources and long-range transport on aerosol properties over the northeast U.S. region during INTEX-NA
We use data collected aboard the NASA DC-8 aircraft during the summer 2004, Intercontinental Transport and Chemical Evolution Experiment over North America (INTEX-NA) field campaign to examine the origin, composition, physical and optical properties of aerosols within air masses sampled over and downwind of the northeastern U.S. We note that aerosol concentrations within the region exhibited steep vertical gradients and significant variability in both time and space. An examination of air mass chemical signatures and backward trajectories indicates that transport from four, significantly different source regions contributed to the variability: the subtropical Atlantic Ocean (AO); the U.S. west coast and eastern Pacific (WCP); the U.S. east coast and Midwestern states (EC); and northwest Canada and Alaska (CA). AO air masses were typically confined to below 2 km altitude, exhibited low pollutant contents, contained enhanced levels of sea salt, and were typically observed when the Bermuda High strengthened. The most common air mass present in the upper troposphere, WCP air often contained weak dust and aged pollution enhances from convective input occurring over the central part of the continent. CA air exhibited enhancements in anthropogenic pollution tracers below 2 km and contained some black-carbon rich haze layers between 3 and 5 km that could be traced to forest fires burning in western Canada and Alaska. EC air was prevalent at lower elevations throughout the study area and exhibited enhanced scattering along with elevated levels of sulfate aerosols and combustion tracers. There is an overall balance between the observed cations and anions for all cases, except EC air mass below 4 km
The conformal status of Brans-Dicke cosmology
Following recent fit of supernovae data to Brans-Dicke theory which favours
the model with \cite{fabris} we discuss the status of this
special case of Brans-Dicke cosmology in both isotropic and anisotropic
framework. It emerges that the limit is consistent only with
the vacuum field equations and it makes such a Brans-Dicke theory conformally
invariant. Then it is an example of the conformal relativity theory which
allows the invariance with respect to conformal transformations of the metric.
Besides, Brans-Dicke theory with gives a border between a
standard scalar field model and a ghost/phantom model.
In this paper we show that in Brans-Dicke theory, i.e., in
the conformal relativity there are no isotropic Friedmann solutions of non-zero
spatial curvature except for case. Further we show that this
case, after the conformal transformation into the Einstein frame, is just the
Milne universe and, as such, it is equivalent to Minkowski spacetime. It
generally means that only flat models are fully consistent with the field
equations. On the other hand, it is shown explicitly that the anisotropic
non-zero spatial curvature models of Kantowski-Sachs type are admissible in
Brans-Dicke theory. It then seems that an additional scale
factor which appears in anisotropic models gives an extra deegre of freedom and
makes it less restrictive than in an isotropic Friedmann case.Comment: REVTEX4, 19 pages, 8 figures, references adde
Real-world effectiveness of different early intervention programs for children with autism spectrum disorders in Greece
Analytic and Numerical Study of Preheating Dynamics
We analyze the phenomenon of preheating,i.e. explosive particle production
due to parametric amplification of quantum fluctuations in the unbroken case,
or spinodal instabilities in the broken phase, using the Minkowski space
vector model in the large limit to study the non-perturbative issues
involved. We give analytic results for weak couplings and times short compared
to the time at which the fluctuations become of the same order as the tree
level,as well as numerical results including the full backreaction.In the case
where the symmetry is unbroken, the analytic results agree spectacularly well
with the numerical ones in their common domain of validity. In the broken
symmetry case, slow roll initial conditions from the unstable minimum at the
origin, give rise to a new and unexpected phenomenon: the dynamical relaxation
of the vacuum energy.That is, particles are abundantly produced at the expense
of the quantum vacuum energy while the zero mode comes back to almost its
initial value.In both cases we obtain analytically and numerically the equation
of state which turns to be written in terms of an effective polytropic index
that interpolates between vacuum and radiation-like domination. We find that
simplified analysis based on harmonic behavior of the zero mode, giving rise to
a Mathieu equation forthe non-zero modes miss important physics. Furthermore,
analysis that do not include the full backreaction do not conserve energy,
resulting in unbound particle production. Our results do not support the recent
claim of symmetry restoration by non-equilibrium fluctuations.Finally estimates
of the reheating temperature are given,as well as a discussion of the
inconsistency of a kinetic approach to thermalization when a non-perturbatively
large number of particles is created.Comment: Latex file, 52 pages and 24 figures in .ps files. Minor changes. To
appear in Physical Review D, 15 December 199
UV and X-Ray Monitoring of AG Draconis During the 1994/1995 Outbursts
The recent 1994-1995 active phase of AG Draconis has given us for the first
time the opportunity to follow the full X-ray behaviour of a symbiotic star
during two successive outbursts and to compare with its quiescence X-ray
emission. With \ros observations we have discovered a remarkable decrease of
the X-ray flux during both optical maxima, followed by a gradual recovering to
the pre-outburst flux. In the UV the events were characterized by a large
increase of the emission line and continuum fluxes, comparable to the behaviour
of AG Dra during the 1980-81 active phase. The anticorrelation of X-ray/UV flux
and optical brightness evolution is shown to very likely be due to a
temperature decrease of the hot component. Such a temperature decrease could be
produced by an increased mass transfer to the burning compact object, causing
it to slowly expand to about twice its original size.Comment: 12 pages postscript incl. figures, Proc. of Workshop on Supersoft
X-Ray Sources, to appear in Lecture Notes in Physics vol. 472 (1996
- …
