147 research outputs found
Analysis and hardware testing of cell capacitor discharge currents during DC faults in half-bridge modular multilevel converters
This paper focuses on the behaviour of the cell capacitor discharge currents during DC faults in half-bridge modular multilevel converters. Active switches, not designed for fault conditions, are tripped to minimize discharge currents effect on the semiconductor switches. Two levels of device protection are commonly in place; driver level protection monitoring collector-emitter voltage and overcurrent protection with feedback measurement and control. However, unavoidable tripping delay times, arising from factors such as sensor lags, controller sampling delays and hardware propagation delays, impact transient current shape and hence affect the selection of semiconductor device ratings as well as arm inductance. Analytical expressions are obtained for current slew rate, peak transient current and resultant I2t for the cell capacitor discharge current taking into account such delays. The study is backed by experimental testing on discharge of a 900V MMC capacitor
Design and implementation of 30kW 200/900V LCL modular multilevel based DC/DC converter for high power applications
This paper presents the design, development and testing of a 30kW, 200V/900V modular multilevel converter (MMC) based DC/DC converter prototype. An internal LCL circuit is used to provide voltage stepping and fault tolerance property. The converter comprises two five level MMC based on insulated gate bipolar transistors (IGBTs) and metal oxide semiconductor field effect transistor (MOSFET). Due to low number of levels, selective harmonic elimination modulation (SHE) is used, which determines the switching angles in such a way that third harmonic is minimized whereas the fundamental component is a linear function of the modulation index. In addition, instead of using an expensive control board, three commercial control boards are embedded. This is required to implement the sophisticated DC/DC converter control algorithm. Simulation and experimental results are presented to demonstrate the converter performance in step up and down modes
Coordination of mechanical DCCBs and temporary blocking of half bridge MMC
Peer reviewedPublisher PD
Estimating divergence and vorticity from aircraft data in the stratocumulus topped boundary layer
Power Hardware In The Loop Validation of Fault Ride Through of VSC HVDC Connected Offshore Wind Power Plants
Small signal state space model of the frequency-dependent DC cable based on direct vector fitting
Peer reviewedPublisher PD
Analysis of DC Fault for Dual Active Bridge DC/DC Converter including Prototype Verification
Peer reviewedPostprin
In vivo effects of interleukin-17 on haematopoietic cells and cytokine release in normal mice
In order to gain more insight into mechanisms operating on the haematopoietic activity of the T-cell-derived cytokine, interleukin-17 (IL-17) and target cells that first respond to its action in vivo, the influence of a single intravenous injection of recombinant mouse IL-17 on bone marrow progenitors, further morphologically recognizable cells and peripheral blood cells was assessed in normal mice up to 72 h after treatment. Simultaneously, the release of IL-6, IL-10, IGF-I, IFN-gamma and NO by bone marrow cells was determined. Results showed that, in bone marrow, IL-17 did not affect granulocyte-macrophage (CFU-GM) progenitors, but induced a persistant increase in the number of morphologically recognizable proliferative granulocytes (PG) up to 48 h after treatment. The number of immature erythroid (BFU-E) progenitors was increased at 48 h, while the number of mature erythroid (CFU-E) progenitors was decreased up to 48 h. In peripheral blood, white blood cells were increased 6 h after treatment, mainly because of the increase in the number of lymphocytes. IL-17 also increased IL-6 release and NO production 6 h after administration. Additional in vitro assessment on bone marrow highly enriched Lin(-) progenitor cells, demonstrated a slightly enhancing effect of IL-17 on CFU-GM and no influence on BFU-E, suggesting the importance of bone marrow accessory cells and secondary induced cytokines for IL-17 mediated effects on progenitor cells. Taken together, these results demonstrate that in vivo IL-17 affects both granulocytic and erythroid lineages, with more mature haematopoietic progenitors responding first to its action. The opposite effects exerted on PG and CFU-E found at the same time indicate that IL-17, as a component of a regulatory network, is able to intervene in mechanisms that shift haematopoiesis from the erythroid to the granulocytic lineage
- …
