12,483 research outputs found
Positional information, positional error, and read-out precision in morphogenesis: a mathematical framework
The concept of positional information is central to our understanding of how
cells in a multicellular structure determine their developmental fates.
Nevertheless, positional information has neither been defined mathematically
nor quantified in a principled way. Here we provide an information-theoretic
definition in the context of developmental gene expression patterns and examine
which features of expression patterns increase or decrease positional
information. We connect positional information with the concept of positional
error and develop tools to directly measure information and error from
experimental data. We illustrate our framework for the case of gap gene
expression patterns in the early Drosophila embryo and show how information
that is distributed among only four genes is sufficient to determine
developmental fates with single cell resolution. Our approach can be
generalized to a variety of different model systems; procedures and examples
are discussed in detail
Assessing the performance of protective winter covers for outdoor marble statuary: pilot investigation
Outdoor statuary in gardens and parks in temperate climates has a tradition of being covered during the winter, to protect against external conditions. There has been little scientific study of the environmental protection that different types of covers provide. This paper examines environmental conditions provided by a range of covers used to protect marble statuary at three sites in the UK. The protection required depends upon the condition of the marble. Although statues closely wrapped and with a layer of insulation provide good protection, this needs to be considered against the potential physical damage of close wrapping a fragile deteriorated surface
Characteristic spatial scale of vesicle pair interactions in a plane linear flow
We report the experimental studies on interaction of two vesicles trapped in
a microfluidic analog of four-roll mill, where a plane linear flow is realized.
We found that the dynamics of a single vesicle is significantly altered by the
presence of another vesicle at separation distances up to about 3.2 \div 3.7
times of effective radius of the vesicles. This is supported by direct
measurements of a single vesicle back-reaction on the velocity field. Thus, the
experiment provides the lower bound for the interaction scale of vesicles and
so the corresponding upper bound for the volume fraction \phi=0.08 \div 0.13 of
non-interacting vesicle suspensions.Comment: 5 pages, 8 figures, PRE accepted for publicatio
- …
