20,707 research outputs found

    Resonance State Wave Functions of 15^{15}Be using Supersymmetric Quantum Mechanics

    Full text link
    The theoretical procedure of supersymmetric quantum mechanics is adopted to generate the resonance state wave functions of the unbound nucleus 15^{15}Be. In this framework, we used a density dependent M3Y microscopic potential and arrived at the energy and width of the 1.8 MeV (5/2+^+) resonance state. We did not find any other nearby resonances for 15^{15}Be. It becomes apparent that the present framework is a powerful tool to theoretically complement the increasingly important accelerator based experiments with unbound nuclei.Comment: 5 pages, 4 figures, Phys. Lett. B (2017

    Color Transparency: past, present and future

    Full text link
    We review a unique prediction of Quantum Chromo Dynamics, called color transparency (CT), where the final (and/or initial) state interactions of hadrons with the nuclear medium must vanish for exclusive processes at high momentum transfers. We retrace the progress of our understanding of this phenomenon, which began with the discovery of the J/ψJ/\psi meson, followed by the discovery of high energy CT phenomena, the recent developments in the investigations of the onset of CT at intermediate energies and the directions for future studies.Comment: 41 pages, 27 figures, to appear in Prog. Nucl. Part. Phy

    Dissipative phenomena in chemically non-equilibrated quark gluon plasma

    Get PDF
    The dissipative corrections to the hydrodynamic equations describing the evolution of energy-momentum tensor and parton densities are derived in a simple way using the scaling approximation for the expanding quark gluon plasma at finite baryon density. This procedure has been extended to study the process of chemical equilibration using a set of rate equations appropriate for a viscous quark gluon plasma. It is found that in the presence of dissipation, the temperature of the plasma evolves slower, whereas the quark and gluon fugacities evolve faster than their counterparts in the ideal case without viscosity.Comment: Latex, 20 pages, 4 postscript figures. Submitted in Phys. Rev.

    Electron-Electron Interactions on the Edge States of Graphene: A Many Body Configuration Interaction Study

    Full text link
    We have studied zigzag and armchair graphene nano ribbons (GNRs), described by the Hubbard Hamiltonian using quantum many body configuration interaction methods. Due to finite termination, we find that the bipartite nature of the graphene lattice gets destroyed at the edges making the ground state of the zigzag GNRs a high spin state, whereas the ground state of the armchair GNRs remains a singlet. Our calculations of charge and spin densities suggest that, although the electron density prefers to accumulate on the edges, instead of spin polarization, the up and down spins prefer to mix throughout the GNR lattice. While the many body charge gap results in insulating behavior for both kinds of GNRs, the conduction upon application of electric field is still possible through the edge channels because of their high electron density. Analysis of optical states suggest differences in quantum efficiency of luminescence for zigzag and armchair GNRs, which can be probed by simple experiments.Comment: 5 pages, 4 figure
    corecore