4,110 research outputs found
Quantum Mechanics helps in searching for a needle in a haystack
Quantum mechanics can speed up a range of search applications over unsorted
data. For example imagine a phone directory containing N names arranged in
completely random order. To find someone's phone number with a probability of
50%, any classical algorithm (whether deterministic or probabilistic) will need
to access the database a minimum of O(N) times. Quantum mechanical systems can
be in a superposition of states and simultaneously examine multiple names. By
properly adjusting the phases of various operations, successful computations
reinforce each other while others interfere randomly. As a result, the desired
phone number can be obtained in only O(sqrt(N)) accesses to the database.Comment: Postscript, 4 pages. This is a modified version of the STOC paper
(quant-ph/9605043) and is modified to make it more comprehensible to
physicists. It appeared in Phys. Rev. Letters on July 14, 1997. (This paper
was originally put out on quant-ph on June 13, 1997, the present version has
some minor typographical changes
Quantum computers can search arbitrarily large databases by a single query
This paper shows that a quantum mechanical algorithm that can query
information relating to multiple items of the database, can search a database
in a single query (a query is defined as any question to the database to which
the database has to return a (YES/NO) answer). A classical algorithm will be
limited to the information theoretic bound of at least O(log N) queries (which
it would achieve by using a binary search).Comment: Several enhancements to the original pape
Amorphization of Vortex Matter and Reentrant Peak Effect in YBaCuO
The peak effect (PE) has been observed in a twinned crystal of
YBaCuO for Hc in the low field range, close to
the zero field superconducting transition temperature (T(0)) . A sharp
depinning transition succeeds the peak temperature T of the PE. The PE
phenomenon broadens and its internal structure smoothens out as the field is
increased or decreased beyond the interval between 250 Oe and 1000 Oe.
Moreover, the PE could not be observed above 10 kOe and below 20 Oe. The locus
of the T(H) values shows a reentrant characteristic with a nose like
feature located at T(H)/T(0)0.99 and H100 Oe (where
the FLL constant apenetration depth ). The upper part of
the PE curve (0.5 kOeH10 kOe) can be fitted to a melting scenario with
the Lindemann number c0.25. The vortex phase diagram near T(0)
determined from the characteristic features of the PE in
YBaCuO(Hc) bears close resemblance to that in
the 2H-NbSe system, in which a reentrant PE had been observed earlier.Comment: 15 pages and 7 figure
Quantum computers can search rapidly by using almost any transformation
A quantum computer has a clear advantage over a classical computer for
exhaustive search. The quantum mechanical algorithm for exhaustive search was
originally derived by using subtle properties of a particular quantum
mechanical operation called the Walsh-Hadamard (W-H) transform. This paper
shows that this algorithm can be implemented by replacing the W-H transform by
almost any quantum mechanical operation. This leads to several new applications
where it improves the number of steps by a square-root. It also broadens the
scope for implementation since it demonstrates quantum mechanical algorithms
that can readily adapt to available technology.Comment: This paper is an adapted version of quant-ph/9711043. It has been
modified to make it more readable for physicists. 9 pages, postscrip
Measurement of an integral of a classical field with a single quantum particle
A method for measuring an integral of a classical field via local interaction
of a single quantum particle in a superposition of 2^N states is presented. The
method is as efficient as a quantum method with N qubits passing through the
field one at a time and it is exponentially better than any known classical
method that uses N bits passing through the field one at a time. A related
method for searching a string with a quantum particle is proposed.Comment: 3 page
Nested quantum search and NP-complete problems
A quantum algorithm is known that solves an unstructured search problem in a
number of iterations of order , where is the dimension of the
search space, whereas any classical algorithm necessarily scales as . It
is shown here that an improved quantum search algorithm can be devised that
exploits the structure of a tree search problem by nesting this standard search
algorithm. The number of iterations required to find the solution of an average
instance of a constraint satisfaction problem scales as , with
a constant depending on the nesting depth and the problem
considered. When applying a single nesting level to a problem with constraints
of size 2 such as the graph coloring problem, this constant is
estimated to be around 0.62 for average instances of maximum difficulty. This
corresponds to a square-root speedup over a classical nested search algorithm,
of which our presented algorithm is the quantum counterpart.Comment: 18 pages RevTeX, 3 Postscript figure
Realization of generalized quantum searching using nuclear magnetic resonance
According to the theoretical results, the quantum searching algorithm can be
generalized by replacing the Walsh-Hadamard(W-H) transform by almost any
quantum mechanical operation. We have implemented the generalized algorithm
using nuclear magnetic resonance techniques with a solution of chloroform
molecules. Experimental results show the good agreement between theory and
experiment.Comment: 11 pages,3 figure. Accepted by Phys. Rev. A. Scheduled Issue: 01 Mar
200
Vortex Phase Diagram of weakly pinned YBaCuO for H c
Vortex phase diagram in a weakly pinned crystal of YBCO for H c
is reviewed in the light of a recent elucidation of the process of `inverse
melting' in a Bismuth cuprate system and the imaging of an interface between
the ordered and the disordered regions across the peak effect in 2H-NbSe.
In the given YBCO crystal, a clear distinction can be made between the second
magnetization peak (SMP) and the peak effect (PE) between 65 K and 75 K. The
field region between the peak fields of the SMP (H) and the onset
fields of the PE (H)is not only continuously connected to the Bragg
glass phase at lower fields but it is also sandwiched between the higher
temperature vortex liquid phase and the lower temperature vortex glass phase.
Thus, an ordered vortex state between H and H can get
transformed to the (disordered) vortex liquid state on heating as well as to
the (disordered) vortex glass state on cooling, a situation analogous to the
thermal melting and the inverse melting phenomenon seen in a Bismuth cuprate.Comment: Presented in IWCC-200
- …
