87,386 research outputs found
Space Shuttle 2 advanced space transportation system, volume 2
To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected. Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle 2; the configuration used in the initial proposal; and the final configuration. A listing by cell of the formulas used to generate the aforementioned data is included for reference
Holographic Coulomb Branch Flows with N=1 Supersymmetry
We obtain a large, new class of N=1 supersymmetric holographic flow
backgrounds with U(1)^3 symmetry. These solutions correspond to flows toward
the Coulomb branch of the non-trivial N=1 supersymmetric fixed point. The
massless (complex) chiral fields are allowed to develop vevs that are
independent of their two phase angles, and this corresponds to allowing the
brane to spread with arbitrary, U(1)^2 invariant, radial distributions in each
of these directions. Our solutions are "almost Calabi-Yau:" The metric is
hermitian with respect to an integrable complex structure, but is not Kahler.
The "modulus squared" of the holomorphic (3,0)-form is the volume form, and the
complete solution is characterized by a function that must satisfy a single
partial differential equation that is closely related to the Calabi-Yau
condition. The deformation from a standard Calabi-Yau background is driven by a
non-trivial, non-normalizable 3-form flux dual to a fermion mass that reduces
the supersymmetry to N=1. This flux also induces dielectric polarization of the
D3-branes into D5-branes.Comment: 22 pages; harvmac. Typos corrected;small improvements in presentatio
A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems
In this paper we present an analysis of the complexities of large group
collaboration and its application to develop detailed requirements for
collaboration schema for Autonomous Systems (AS). These requirements flow from
our development of a framework for collaboration that provides a basis for
designing, supporting and managing complex collaborative systems that can be
applied and tested in various real world settings. We present the concepts of
"collaborative flow" and "working as one" as descriptive expressions of what
good collaborative teamwork can be in such scenarios. The paper considers the
application of the framework within different scenarios and discuses the
utility of the framework in modelling and supporting collaboration in complex
organisational structures
Nonequilibrium spin distribution in single-electron transistor
Single-electron transistor with ferromagnetic outer electrodes and
nonmagnetic island is studied theoretically. Nonequilibrium electron spin
distribution in the island is caused by tunneling current. The dependencies of
the magnetoresistance ratio on the bias and gate voltages show the
dips which are directly related to the induced separation of Fermi levels for
electrons with different spins. Inside a dip can become negative.Comment: 11 pages, 2 eps figure
Recommended from our members
Constraining uncertainty in aerosol direct forcing
The uncertainty in present-day anthropogenic forcing is dominated by uncertainty in the strength of the contribution from aerosol. Much of the uncertainty in the direct aerosol forcing can be attributed to uncertainty in the anthropogenic fraction of aerosol in the present-day atmosphere, due to a lack of historical observations. Here we present a robust relationship between total present-day aerosol optical depth and the anthropogenic contribution across three multi-model ensembles and a large single-model perturbed parameter ensemble. Using observations of aerosol optical depth, we determine a reduced likely range of the anthropogenic component and hence a reduced uncertainty in the direct forcing of aerosol
Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary
An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences
Bivariate -distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems
Interacting many-particle systems with a mean-field one body part plus a
chaos generating random two-body interaction having strength , exhibit
Poisson to GOE and Breit-Wigner (BW) to Gaussian transitions in level
fluctuations and strength functions with transition points marked by
and , respectively; . For these systems theory for matrix elements of one-body transition
operators is available, as valid in the Gaussian domain, with , in terms of orbitals occupation numbers, level densities and an
integral involving a bivariate Gaussian in the initial and final energies. Here
we show that, using bivariate -distribution, the theory extends below from
the Gaussian regime to the BW regime up to . This is well
tested in numerical calculations for six spinless fermions in twelve single
particle states.Comment: 7 pages, 2 figure
The Anti-Coincidence Detector for the GLAST Large Area Telescope
This paper describes the design, fabrication and testing of the
Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope
(GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against
the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders
of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector,
requiring a total active area of ~8.3 square meters. The ACD detector utilizes
plastic scintillator tiles with wave-length shifting fiber readout. In order to
suppress self-veto by shower particles at high gamma-ray energies, the ACD is
segmented into 89 tiles of different sizes. The overall ACD efficiency for
detection of singly charged relativistic particles entering the tracking
detector from the top or sides of the LAT exceeds the required 0.9997.Comment: 33 pages, 19 figure
Radiation pattern of a classical dipole in a photonic crystal: photon focusing
The asymptotic analysis of the radiation pattern of a classical dipole in a
photonic crystal possessing an incomplete photonic bandgap is presented. The
far-field radiation pattern demonstrates a strong modification with respect to
the dipole radiation pattern in vacuum. Radiated power is suppressed in the
direction of the spatial stopband and strongly enhanced in the direction of the
group velocity, which is stationary with respect to a small variation of the
wave vector. An effect of radiated power enhancement is explained in terms of
\emph{photon focusing}. Numerical example is given for a square-lattice
two-dimensional photonic crystal. Predictions of asymptotic analysis are
substantiated with finite-difference time-domain calculations, revealing a
reasonable agreement.Comment: Submitted to Phys. Rev.
- …
